к561тм2 что можно собрать

Электронные выключатели и переключатели, реле времени (К561ТМ2, CD4060)

Рассмотрено 6 принципиальных схем самодельных электронных выключателей и реле времени, выполненных на основе микросхем К561ТМ2 и CD4060, описана их работа и возможности по применению. В настоящее время в радиоэлектронной аппаратуре, в основном, электронные выключатели, либо и электронный и механический.

Электронный выключатель в радиоэлектронной аппаратуре в подавляющем большинстве случаев входит в состав контроллера управления, управляющего и другими функциями аппарата.

Но, если нужно оборудовать электронным выключателем какое-то устройство, самодельное или у которого не предусмотрен электронный выключатель, это можно по одной из приводимых здесь схем, на основе микросхемы КМОП-логики и мощного полевого ключевого транзистора.

Выключатель управляемый одной кнопкой

Первая схема простого выключателя, управляемого одной кнопкой приведена на рисунке 1. Мощный полевой транзистор VТ1 выполняет функции электронного ключа, а управляет им D-триггер микросхемы К561ТМ2.

Данная схема, как и все последующие, потребляет минимальный ток, измеряемый единицами микроампер, и поэтому, практически не оказывает влияния на расход источника питания.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 1. Схема простого электронного выключателя, управляемого одной кнопкой.

Для того чтобы в момент подключения источника питания нагрузка не включилась сама здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние.

При этом, на инверсном выходе триггера будет напряжение логического нуля. Оно через резистор R3, с небольшой задержкой, поступает на вход «D» триггера.

Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

Теперь, при следующем нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в единицу. Единица на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 падает до величины, недостаточной для открывания полевого транзистора VТ1. Нагрузка выключается.

Электронный переключатель двух нагрузок

Но не всегда требуется именно выключатель, бывает что нужен переключатель. На рисунке 2 показана схема электронного переключателя двух нагрузок. Главное отличие от схемы на рис.1 в том, что здесь два мощных полевых транзистора.

При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, питание на нагрузку 1 не поступает. А напряжение между истоком и затвором транзистора VТ2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 2. Схема простого самодельного электронного переключателя двух нагрузок.

При этом, нуль с инверсного выхода триггера через резистор R3, с небольшой задержкой, поступает на вход «D» триггера. Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку 1 поступает питание.

Но транзистор VТ2 при этом закрывается, и нагрузка 2 выключается. Таким образом, при каждом нажатии кнопки S1 происходит переключение нагрузок.

Поэтому, как при нажатии кнопки, так и при её отпускании, может формировать не один импульс, а целая серия коротких импульсов. И это может привести к многократному переключению триггера, и в результате, установке его в произвольное состояние. Чтобы такого не происходило здесь есть цепь C2-R3.

Она несколько задерживает приход логического уровня с инверсного выхода триггера на его вход «D». Поэтому, пока длится дребезг контактов, напряжение на входе «D» не меняется, и импульсы дребезга на состояние триггера не влияют.

Выключатель с двумя кнопками

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 3. Схема электронного выключателя нагрузки с двумя кнопками.

Здесь точно так же, мощный полевой транзистор VТ1 выполняет функции электронного ключа, а управляет им триггер микросхемы К561ТМ2. Только работает он не как D-триггер, а как RS-триггер. Для этого его входы «С» и «D» соединены с общим минусом питания (то есть, на них всегда логические нули).

Для того чтобы в момент подключения источника питания нагрузка не включилась сама здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние.

Для включения нагрузки служит кнопка S1. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 возрастает до величины, достаточной для открывания полевого транзистора VT1.

На нагрузку поступает питание. Для того, чтобы выключить нагрузку нужно нажать кнопку S2. При её нажатии триггер переключается в положение «S», то есть, на его прямом выходе устанавливается логическая единица.

Единица на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 падает до величины, недостаточной для открывания полевого транзистора VT1. Нагрузка выключается.

Две кнопки и две нагрузки

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 4. Схема электронного переключателя с двумя кнопками для двух нагрузок.

А напряжение между истоком и затвором транзистора VT2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2. Для включения нагрузки 1 служит кнопка 51. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 возрастает до величины, достаточной для открывания полевого транзистора VT1. На нагрузку поступает питание.

Для включения нагрузки 2 служит кнопка 52. При её нажатии триггер переключается в положение «S», то есть, на его инверсном выходе устанавливается логический ноль. Логический нуль на затворе VT2 приводит к тому, что напряжение между истоком и затвором VT2 возрастает до величины, достаточной для открывания полевого транзистора VT2.

Электронное реле времени

Но понадобиться могут не только выключатели и переключатели, но реле времени. На рисунке 5 показана схема электронного реле времени, которое включает нагрузку при нажатии кнопки S1, а выключает её примерно через 30 секунд.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 5. Схема электронного реле времени для включения нагрузки при нажатии кнопки и выключения через 30 секунд.

Реле времени запускается кнопкой S1. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

В то же время, логическая единица с инверсного выхода начинает через резистор R2 медленно заряжать конденсатор С1. Время включенного состояния нагрузки истекает тогда, когда конденсатор С1 зарядится до напряжения, которое будет понято микросхемой как логическая единица. Тогда триггер установится в состояние «S».

Реле времени на 8 часов

Изменением составляющих этой цепи можно изменять это время в широких пределах, но очень большого времени выдержки достигнуть сложно. На рисунке 6 показана схема реле времени на цифровой микросхеме, время включенного состояния нагрузки в котором составляет около 8 часов.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 6. ЁПринципиальная схема реле времени на цифровой микросхеме, которое включает нагрузку на 8 часов.

Реле времени запускается кнопкой S1. При её нажатии счетчик микросхемы D1 переключается в нулевое состояние, то есть, на всех его выходах устанавливается логический ноль, в том числе и на самом старшем выходе D14. Откуда он поступает на затвор VТ1.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

В то же время, логическая единица через диод VD3 поступает на вывод 11 D1 и блокирует внутренний мультивибратор микросхемы. Генерация импульсов прекращается. Во всех схемах для подачи питания на нагрузку используются транзисторы IRFR5505. Это ключевой полевой транзистор с допустимым током коллектора 18А и сопротивлением в открытом состоянии 0,1 От.

Открывается транзистор при напряжении на затворе не ниже 4,25V. Поэтому и минимальное напряжение питания в схемах указано 5V, так сказать, чтобы точно хватило. Но, при напряжении питания схемы до 7V и при большом токе нагрузки транзистор все же открывается не полностью.

В очень редких случаях это повреждает микросхему, гораздо чаще это приводит к сбоям в работе микросхемы, особенно триггеров и счетчиков. Чтобы этих сбоев не происходило между выходами микросхем и затворами транзисторов в этих схемах включены токоограничивающие резисторы, например, R4 в схеме на рис.1. Плюс два диода, ускоряющих заряд / разряд емкости затвора.

Литовкин С. Н. РК-08-17.

Источник

Генератор на к561тм2 схема

Генераторы на КМОП логике по принципу построения ничем не отличаются от генераторов на ТТЛ микросхемах, но ввиду малого энергопотребления КМОП микросхемами и гораздо меньших рабочих токов (в частности входных) отличия все же имеются. Прежде всего, для генераторов КМОП логики характерны большие величины времязадающих резисторов (десятки и сотни кОм в отличие от сотен Ом для ТТЛ) и малые емкости конденсаторов. К примеру, классическая схема генератора (рис.1), собранная на 561 серии при сопротивлении резистора менее 1 кОм вообще не запустится.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Ниже у МОП генераторов получится и максимальная частота генерации, которая ограничена верхней частотой переключения МОП элементов (обычно до 2 МГц). Причем эта частота падает при снижении напряжения питания. Достоинством же генераторов на КМОП микросхемах можно считать широкий диапазон питающих напряжений (для 561 серии напряжение питания может лежать в диапазоне от 2 до 12 В, тогда как ТТЛ логика достаточно жестко привязана к напряжению питания 5В, 10% погрешность). Плюс малые величины, а значит и габариты времязадающих конденсаторов и, главное, очень малое энергопортебление (1 мА и менее).

Если требуется повысить стабильность частоты генерации, то имеет смысл применить схему на трех инверторах.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собратьНу и еще более стабильными получатся генераторы, в качестве частотозадающего элемента в которых используется индуктивность. В этом случае схема простейшего мультивибратора будет выглядеть так:

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Из-за того, что переключение логического элемента не происходит ровно при половине питающего напряжения, длительность импульса простого КМОП генератора сильно отличается от длительности паузы. При необходимости получить четкий меандр со скважностью 2, придется использовать более сложную схему:

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Здесь длительность паузы и длительность импульса можно изменять независимой подборкой сопротивлений R1 и R2.

Следующие две схемы позволяют оперативно регулировать либо длительности импульса и паузы раздельно (рисунок а), либо менять скважность (одновременное уменьшение одной характеристики с увеличением другой)к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать:

Вообще же для получения идеально четкой скважности 2 лучше использовать счетный триггер, подключенный к выходу мультивибратора, настроенного на частоту вдвое большую, чем необходимо получить.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Есть вариант получения скважности 2 или так называемого «меандра» и проще. Для этого придется собрать симметричный мультивибратор на микросхеме К561ТЛ1. При равенстве сопротивлений и емкостей в плечах, такой генератор будет выдавать четкий «прямоугольник» со скважностью 2.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Частоту генерации можно определить по следующей формуле: F=1.05/R1*C1, где F – частота в килогерцах, R – сопротивление резистора R1 = R2 в килоомах, С – емкость конденсатора C1=C2 в микрофарадах. Мультивибратор может быть собран и на микросхемах К561ЛЕ5 или К561ЛА7, однако фронт и спад импульсов в этом случае будет несколько завален.

А вот еще несколько схем симметричных мультивибраторов:
к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Ну и когда к стабильности частоты предъявляются совсем уже жесткие требования, то как и в случае с ТТЛ-генераторами, без кварцевого резонатора не обойтись:

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Обратите внимание, что в частотозадающую цепь может быть подключен подстроечный конденсатор небольшой емкости, позволяющий слегка изменять частоту генерации. Стабильность же при этом будет все равно зависеть от стабильности кварцевого резонатора.

Вариант простейшего генератора (мультивибратора) показан на рис. 1а.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис.1. Генератор импульсов на двух инверторах

Схема имеет два динамических состояния. В первом из них, когда на выходе D1.1 состояние лог. «1» (выход D1.2 лог. «0»), конденсатор С1 заряжается. В процессе заряда напряжение на входе инвертора D1.1 возрастает, и при достижении значения Uпор=0,5Uпит происходит скачкообразный переход во второе динамическое состояние, в котором на выходах D1.1 лог. «О», D1.2 — «1». В этом состоянии происходит перезаряд емкости (разряд) током обратного направления. При достижении напряжения на С1 Unop происходит возврат схемы в первое динамическое состояние. Диаграмма напряжений поясняет работу. Резистор R2 является ограничительным, и его сопротивление не должно быть меньше 1 кОм, а чтобы он не влиял на расчетную частоту, номинал резистора R1 выбираем значительно больше R2 (R2

При использовании в схеме (рис. 1б) двух инверторов микросхемы К561ЛН2 (они имеют на входе только один защитный диод) перезаряд конденсатора будет происходить от уровня Uпит+Unop. В результате чего симметричность импульсов нарушается tи=1,1R1C1, to=0,5R1C1, период T=1,6R1C1.

Так как порог переключения логических элементов не соответствует точно половине напряжения питания, чтобы получить симметричность импульсов, в традиционную схему генератора можно добавить цепь из R2 и VD1, рис. 1в. Резистор R2 позволяет подстройкой получить меандр (tи=to) на выходе генератора.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис 2. Генератор импульсов с раздельной установкой длительности импульса и паузы между ними.

Схема на рис. 2 дает возможность раздельно регулировать длительность и паузу между импульсами: tи=0,8C1R1, to=0,8C1R2. При номиналах элементов, указанных на схеме, длительность импульсов около 0,1 с, период повторения 1 с.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис. 3. Генератор импульсов на трех инверторах.

Более стабильна частота у генераторов, выполненных на трех инверторах (Рис. 3). Процесс перезаряда С1 в сторону уменьшения напряжения на левой обкладке начинается от напряжения Uпит+Unop, в результате чего на это уходит больше времени tи=1,1C1R2. Полный период колебаний составит T=1,8C1R2.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис. 4. Генератор импульсов с раздельной регулировкой а) длительности импульсов и паузы между ними б) скважности импульсов

На рис. 4 приведены схемы аналогичных генераторов, которые позволяют раздельно регулировать длительность и паузу между импульсами или при неизменной частоте регулировать скважность импульсов. Мультивибратор на основе триггера Шмидта показан на рис. 5.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис. 5. Генератор перекрывающихся импульсов.

Если требуется получить на выходе приведенных выше схем генераторов симметричные импульсы без подстройки, то после схемы необходимо ставить триггер или же воспользоваться схемой на трех инверторах, рис. 6.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис. 6. Генератор с симметричными импульсами на выходе.

Элемент D1.1 используется для создания второй цепи отрицательной обратной связи, охватывающей инвертор D1.2 (главную цепь обратной связи для сигнала образует резистор R5) Элемент микросхемы D1.1 работает в режиме с низким коэффициентом усиления при замкнутой обратной связи подобно операционному усилителю работающему в линейной части характеристики В результате этого инвертированное пороговое напряжение инвертора D1 1 может быть просуммировано с напряжением отрицательной обратной связи и подано на вход элемента D1.2. Если соотношение R2/R1 равно отношению R3/R5 может быть получена полная компенсация ошибок обусловленных изменением пороговых напряжении элементов D1.1 и D1.2 При этом предполагается, что все элементы схемы расположены в одном корпусе и их пороговые напряжения фактически равны Частота импульсов такой схемы определяется из соотношения F=1/R5C1 (она будет примерно в два раза выше по сравнению со схемой, показанной на рис. 1).

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис. 7. Симметричные мультивибраторы а) на RS триггере с двумя конденсаторами,
б) с одним конденсатором, в) с резисторами соединенными с источником питания,
г) на двух RS триггерах

Симметричный мультивибратор можно выполнить на основе RS-триггере, рис 7. Вариант схемы на рис. 7в позволяет резисторы R1 и R2 выбирать более низкоомными, потому что диоды разделяют цепь заряда от выходов триггера. Вторым преимуществом этой схемы является то, что она позволяет легко и независимо регулировать в определенных границах период и скважность генерируемых импульсов. Скважность можно регулировать линейно, если R1 и R2 объединить в один потенциометр, а период — если общий конец R1 и R2 соединить с источником питания через потенциометр. С целью уменьшения количества дискретных элементов предложена схема мультивибратора на двух RS-триггерах, рис. 7г.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис. 8. Автогенератор на основе двух логических элементов.

Симметричный мультивибратор можно выполнить на двух ЛЭ, рис. 8 или одновибраторах, рис. 9.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис. 9. Автогенератор на двух одновибраторах.

Это также позволяет иметь раздельную регулировку длительности импульсов и интервала между ними.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис. 10. Симметричные мультивибраторы.

Простейшие схемы симметричных мультивибраторов приведены на рис. 10. При этом, если R1=R2, R3=R4, С1=С2, полный период определяется из соотношения Т=1,4RC.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис. 11. Генератор импульсов с повышенной нагрузочной способностью.

Генератор с малым потреблением энергии можно выполнить на двух ключах микросхемы К561КТЗ, рис. 11. После включения напряжения питания оба ключа разомкнуты. Конденсатор С1 разряжен, поэтому напряжения на нем нет, зарядный ток от источника питания протекает через последовательно включенные резисторы R1 и R2. Так как R1>R2, напряжение на резисторе R2 не достигнет порога срабатывания ключа D1.2, а в дальнейшем, по мере уменьшения зарядного тока, это напряжение стремится к 0. В то же время по мере накопления заряда на конденсаторе напряжение на выводе D1/12 экспоненциально возрастает. Когда оно достигнет порога срабатывания ключа D1.1, соединится цепь между выводами 11 и 10, что приведет к срабатыванию ключа D1.2. Сразу после замыкания обоих ключей нижняя обкладка конденсатора С1 подключается к шине «+» питания. Заряд, накопленный ранее на конденсаторе, не может измениться мгновенно, поэтому напряжение на D1/12 скачком возрастает до уровня, превышающего Uпит на величину, равную порогу срабатывания ключа D1.1. После этого напряжение на С1 начинает уменьшаться с постоянной времени, равной C1R1R3/(R1+R3), и стремится достичь уровня, задаваемого делителем напряжения на резисторах R1, R3. В процессе перезаряда конденсатора напряжение на С1 уменьшится до порога размыкания ключа D1.1. В результате развивается лавинообразный процесс размыкания обоих ключей. Для защиты ключа D1.2 от отрицательного выброса напряжения в схему вводится диод. После размыкания ключей конденсатор начинает заряжаться через последовательно включенные резисторы R1 и R2 — описанные выше процессы повторяются.

При заданной емкости конденсатора длительность паузы t2 между импульсами регулируется резистором R1, однако изменение длительности паузы подбором резистора R1 приводит и к изменению длительности импульса t1. Поэтому, чтобы установить нужную длительность импульса, не меняя паузу, необходимо воспользоваться резистором R3. Регулирование параметров импульсов осуществляется в широких пределах, при этом отношение t1/t2 может быть как меньше, так и больше 1.

Относительно всех автогенераторов на МОП микросхемах можно отметить, что если схема мультивибратора не симметрична, то возрастает ее чувствительность к изменению питающего напряжения (для микросхем 561-ой серии период может меняться на 35% при изменении Uпит от 3 до 15 В), поэтому расчетные соотношения справедливы для максимального напряжения питания.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис. 12. Простейшие схемы мультивибраторов с кварцевой стабилизацией частоты.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать
Рис. 13. Схемы обеспечивающие повышенную стабильность частоты при изменении окружающей температуры в широком диапазоне

При стабилизированном питании, изменение длительности импульсов мультивибраторов и частоты в генераторах на RC-цепях обычно не лучше 1% на 15°С (в случае применения термостабильных конденсаторов). Большую стабильность частоты можно получить, используя кварцевую стабилизацию. На рис. 12 и 13 приведены типовые схемы построения таких генераторов. Для небольшой подстройки частоты иногда последовательно с кварцевым резонатором устанавливают конденсатор 10. 100 пФ. Частота импульсов и их стабильность в этом случае у генератора задается параметрами кварцевого резонатора.

Вариант простейшего генератора (мультивибратора) показан на рис. 1.30а. Схема имеет два динамических состояния. В первом из них, когда на выходе D1.1 состояние лог. «1» (выход D1.2 лог. «0»), конденсатор С1 заряжается. В процессе заряда напряжение на входе инвертора D1.1 возрастает, и при достижении значения Uпор=0,5Uпит происходит скачкообразный переход во второе динамическое состояние, в котором на выходах D1.1 лог. «О», D1.2 — «1». В этом состоянии происходит перезаряд емкости (разряд) током обратного направления. При достижении напряжения на С1 Unop происходит возврат схемы в первое динамическое состояние. Диаграмма напряжений поясняет работу. Резистор R2 является ограничительным, и его сопротивление не должно быть меньше 1 кОм, а чтобы он не влиял на расчетную частоту, номинал резистора R1 выбираем значительно больше R2 (R2 почти одинаковыми: tи=to=0,7R1C1. Полный период T=1,4R1C1. Резистор R1 и конденсатор С1 могут находиться в диапазоне 20 к0м. 10 МОм; 300 пф. 100 мкФ.

При использовании в схеме (рис. 1.30б) двух инверторов микросхемы К561ЛН2 (они имеют на входе только один защитный диод) перезаряд конденсатора будет происходить от уровня Uпит+Unop. В результате чего симметрич-
ность импульсов нарушается tи=1,1R1C1, to=0,5R1C1, период T=1,6R1C1.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 1.30. Генератор импульсов на двух инверторах

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис 1.31. Генератор импульсов с раздельной установкой длительности
импульса и паузы между ними

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 1.32. Генератор импульсов на трех инверторах

Так как порог переключения логических элементов не соответствует точно половине напряжения питания, чтобы получить симметричность импульсов, в традиционную схему генератора можно добавить цепь из R2 и VD1, рис. 1.-Ов. Резистор R2 позволяет подстройкой получить меандр (tи=to) на выходе генератора.

Схема на рис. 1.31 дает возможность раздельно регулировать длительность и паузу между импульсами: tи=0,8C1R1, to=0,8C1R2. При номиналах элементов, указанных на схеме, длительность импульсов около 0,1 с, период повторения 1 с.

Более стабильна частота у генераторов, выполненных на трех инверторах (Рис. 1.32). Процесс перезаряда С1 в сторону уменьшения напряжения на левой обкладке начинается от напряжения Uпит+Unop, в результате чего на это уходит больше времени tи=1,1C1R2. Полный период колебаний составит

На рис. 1.33 приведены схемы аналогичных генераторов, которые позволяют раздельно регулировать длительность и паузу между импульсами или при неизменной частоте регулировать скважность импульсов. Мультивибратор на основе триггера Шмитта показан на рис. 1.34.

Если требуется получить на выходе приведенных выше схем генераторов симметричные импульсы без подстройки, то после схемы необходимо ставить триггер или же воспользоваться схемой на трех инверторах, рис. 1.35. Элемент
D1.1 используется для создания второй цепи отрицательной обратной связи, охватывающей инвертор D1.2 (главную цепь обратной связи для сигнала образует резистор R5) Элемент микросхемы D1 1 работает в режиме с низким
коэффициентом усиления при замкнутой обратной связи подобно операционному усилителю работающему в линейной части характеристики В результате этого инвертированное пороговое напряжение инвертора D1 1 может быть просуммировано с напряжением отрицательной обратной связи и подано на вход

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис 133 Генератор пмпульсов с раздельнои регулировкой
а) длительности импульсов и паузы между ними б) скважности импульсов

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис 1 34 Генератор перекрывающихся импульсов

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис 1 35 Генератор с симметричными импульсами на выходе

элемента D1. 2. Если соотношение R2/R1 равно отношению R3/R5 может быть получена полная компенсация ошибок обусловленных изменением пороговых напряжении элементов D1.1 и D1. 2 При этом предполагается, что все элементы схемы расположены в одном корпусе и их пороговые напряжения фактически равны Частота импульсов такой схемы определяется из соотношения F=1/R5C1 (она будет примерно в два раза выше по сравнению со схемой, показанной на рис. 1.30)

Симметричный мультивибратор можно выполнить на основе RS-триггере, рис 1.36. Вариант схемы на рис 1.31в позволяет резисторы R1 и R2 выби

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

рать более низкоомными, потому что диоды разделяют цепь заряда от выходов триггера. Вторым преимуществом этой схемы является то, что она позволяет легко и независимо регулировать в определенных границах период и скважность генерируемых импульсов. Скважность можно регулировать линейно, если R1 и R2 объединить в один потенциометр, а период — если общий конец R1 и R2 соединить с источником питания через потенциометр.

С целью уменьшения количества дискретных элементов предложена схема мультивибратора на двух RS-триггерах, рис. 1.36г.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 1.37 Автогенератор на основе двух логических элементов

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 1 38. Автогенератор на двух одновибраторах

Симметричный мультивибратор можно выполнить на двух ЛЭ, рис. 1 37 или одновибраторах, рис. 1.38. Это также позволяет иметь раздельную регулировку длительности импульсов и интервала между ними.

Простейшие схемы симметричных мультивибраторов приведены на рис. 1.39. При этом, если R1=R2, R3=R4, С1=С2, полный период определяется из соотношения Т=1,4RC.

Генератор с малым потреблением энергии можно выполнить на двух ключах микросхемы К561КТ-, рис. 1.40. После включения напряжения питания оба ключа разомкнуты. Конденсатор С1 разряжен, поэтому напряжения на нем нет

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис 1 39 Симметричные мультивибраторы

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 1.40. Генератор импульсов с повышенной нагрузочной способностью

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 1.41. Простейшие схемы мультивибраторов с кварцевой
стабилизацией частоты

ключа D1.2 от отрицательного выброса напряжения в схему вводится диод. После размыкания ключей конденсатор начинает заряжаться через последовательно включенные резисторы R1 и R2 — описанные выше процессы повторяются.

При заданной емкости конденсатора длительность паузы t2 между импульсами регулируется резистором R1, однако изменение длительности паузы подбором резистора R1 приводит и к изменению длительности импульса t1. По-
этому, чтобы установить нужную длительность импульса, не меняя паузу, необходимо воспользоваться резистором R3. Регулирование параметров импульсов осуществляется в широких пределах, при этом отношение t1/t2 может быть как меньше, так и больше 1.

Относительно всех автогенераторов на МОП микросхемах можно отметить, что если схема мультивибратора не симметрична, то возрастает ее чувствительность к изменению питающего напряжения (для микросхем 561-ой
серии период может меняться на 35% при изменении Uпит от 3 до 15 В), поэтому расчетные соотношения справедливы для максимального напряжения питания.

к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Рис. 1.42. Схемы обеспечивающие повышенную стабильность частоты при
изменении окружающей температуры в широком диапазоне

При стабилизированном питании, изменение длительности импульсов мультивибраторов и частоты в генераторах на RC-цепях обычно не лучше 1% на 15 ° С (в случае применения термостабильных конденсаторов). Большую стабиль-
ность частоты можно получить, используя кварцевую стабилизацию. На рис. 1.41 и 1.42 приведены типовые схемы построения таких генераторов. Для небольшой подстройки частоты иногда последовательно с кварцевым резонато-
ром устанавливают конденсатор 10. 100 пФ. Частота импульсов и их стабильность в этом случае у генератора задается параметрами кварцевого резонатора.

Автор: Павел (Admin) к561тм2 что можно собрать. Смотреть фото к561тм2 что можно собрать. Смотреть картинку к561тм2 что можно собрать. Картинка про к561тм2 что можно собрать. Фото к561тм2 что можно собрать

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *