кардиодепрессивный эффект что это

Бета-адреноблокаторы III поколения в лечении сердечно-сосудистых заболеваний

Современную кардиологию невозможно представить без препаратов группы бета-адреноблокаторов, которых в настоящее время известно более 30 наименований.

Современную кардиологию невозможно представить без препаратов группы бета-адреноблокаторов, которых в настоящее время известно более 30 наименований. Необходимость включения бета-адреноблокаторов в программу лечения сердечно-сосудистых заболеваний (ССЗ) очевидна: за последние 50 лет кардиологической клинической практики бета-адреноблокаторы заняли прочные позиции в профилактике осложнений и в фармакотерапии артериальной гипертонии (АГ), ишемической болезни сердца (ИБС), хронической сердечной недостаточности (ХСН), метаболическом синдроме (МС), а также при некоторых формах тахиаритмий. Традиционно в неосложненных случаях медикаментозное лечение АГ начинают с бета-адреноблокаторов и диуретиков, снижающих риск развития инфаркта миокарда (ИМ), нарушения мозгового кровообращения и внезапной кардиогенной смерти.

Концепция опосредованного действия лекарственных средств через рецепторы тканей различных органов была предложена N.?Langly в 1905 г., а в 1906 г. H.?Dale подтвердил ее в практике.

В 90-е годы было установлено, что бета-адренорецепторы подразделяются на три подтипа:

Способность блокировать влияние медиаторов на бета1-адренорецепторы миокарда и ослабление влияния катехоламинов на мембранную аденилатциклазу кардиомиоцитов с уменьшением образования циклического аденозинмонофосфата (цАМФ) определяют основные кардиотерапевтические эффекты бета-адреноблокаторов.

Антиишемический эффект бета-адреноблокаторов объясняется снижением потребности миокарда в кислороде, вследствие уменьшения частоты сердечных сокращений (ЧСС) и силы сердечных сокращений, возникающих при блокировании бета-адренорецепторов миокарда.

Бета-блокаторы одновременно обеспечивают улучшение перфузии миокарда за счет уменьшения конечного диастолического давления в левом желудочке (ЛЖ) и увеличения градиента давления, определяющего коронарную перфузию во время диастолы, длительность которой увеличивается в результате урежения ритма сердечной деятельности.

Антиаритмическое действие бета-адреноблокаторов, основанное на их способности уменьшать адренергическое влияние на сердце, приводит к:

Бета-адреноблокаторы повышают порог возникновения фибрилляции желудочков у больных острым ИМ и могут рассматриваться как средства профилактики фатальных аритмий в остром периоде ИМ.

Гипотензивное действие бета-адреноблокаторов обусловлено:

Препараты из группы бета-адреноблокаторов отличаются по наличию или отсутствию кардиоселективности, внутренней симпатической активности, мембраностабилизирующим, вазодилятирующим свойствам, растворимости в липидах и воде, влиянию на агрегацию тромбоцитов, а также по продолжительности действия.

Влияние на бета2-адренорецепторы определяет значительную часть побочных эффектов и противопоказаний к их применению (бронхоспазм, сужение периферических сосудов). Особенностью кардиоселективных бета-адреноблокаторов по сравнению с неселективными является большое сродство к бета1-рецепторам сердца, чем к бета2-адренорецепторам. Поэтому при использовании в небольших и средних дозах эти препараты оказывают менее выраженное влияние на гладкую мускулатуру бронхов и периферических артерий. Следует учитывать, что степень кардиоселективности неодинакова у различных препаратов. Индекс ci/бета1 к ci/бета2, характеризующий степень кардиоселективности, составляет 1,8:1 для неселективного пропранолола, 1:35 — для атенолола и бетаксолола, 1:20 — для метопролола, 1:75 — для бисопролола (Бисогамма). Однако следует помнить, что селективность дозозависима, она снижается с повышением дозы препарата (рис. 1).

кардиодепрессивный эффект что это. Смотреть фото кардиодепрессивный эффект что это. Смотреть картинку кардиодепрессивный эффект что это. Картинка про кардиодепрессивный эффект что это. Фото кардиодепрессивный эффект что это

В настоящее время клиницисты выделяют три поколения препаратов с бета-блокирующим эффектом.

I поколение — неселективные бета1- и бета2-адреноблокаторы (пропранолол, надолол), которые наряду с отрицательными ино-, хроно- и дромотропными эффектами обладают способностью повышать тонус гладкой мускулатуры бронхов, сосудистой стенки, миометрия, что существенно ограничивает их использование в клинической практике.

II поколение — кардиоселективные бета1-адреноблокаторы (метопролол, бисопролол), благодаря высокой селективности в отношении бета1-адренорецепторов миокарда обладают более благоприятной переносимостью при длительном применении и убедительной доказательной базой долгосрочного прогноза жизни при лечении АГ, ИБС и ХСН.

В середине 1980-х годов на мировом фармацевтическом рынке появились бета-адреноблокаторы III поколения с низкой селективностью к бета1, 2-адренорецепторам, но с сочетанной блокадой альфа-адренорецепторов.

Препараты III поколения — целипролол, буциндолол, карведилол (его дженерический аналог с брендовым названием Карведигамма®) обладают дополнительными вазодилятирующими свойствами за счет блокады альфа-адренорецепторов, без внутренней симпатомиметической активности.

В 1982–1983 годах в научной медицинской литературе появились первые сообщения о клиническом опыте применения карведилола при лечении ССЗ.

Ряд авторов выявили протективное действие бета-адреноблокаторов III поколения на клеточные мембраны. Это объясняется, во-первых, ингибированием процессов перекисного окисления липидов (ПОЛ) мембран и антиоксидантным действием бета-блокаторов и, во-вторых, снижением влияния катехоламинов на бета-рецепторы. Некоторые авторы связывают мембранстабилизирующее действие бета-блокаторов с изменением проводимости натрия через них и ингибированием ПОЛ.

Указанные дополнительные свойства расширяют перспективы применения данных лекарственных средств, поскольку нивелируют характерное для первых двух поколений отрицательное влияние на сократительную функцию миокарда, углеводный и липидный обмен и в то же время обеспечивают улучшение перфузии тканей, позитивное влияние на показатели гемостаза и уровень оксидативных процессов в организме.

Карведилол метаболизируется в печени (глюкуронирование и сульфатация) с помощью ферментной системы цитохрома Р450, с использованием семейства ферментов — CYP2D6 и CYP2C9. Антиоксидантное действие карведилола и его метаболитов обусловлено наличием в молекулах карбазольной группы (рис. 2).

кардиодепрессивный эффект что это. Смотреть фото кардиодепрессивный эффект что это. Смотреть картинку кардиодепрессивный эффект что это. Картинка про кардиодепрессивный эффект что это. Фото кардиодепрессивный эффект что это

Метаболиты карведилола — SB 211475, SB 209995 угнетают ПОЛ в 40–100 раз активнее, чем сам препарат, а витамин Е — примерно в 1000 раз.

Применение карведилола (Карведигаммы®) при лечении ИБС

Согласно результатам целого ряда завершенных многоцентровых исследований, бета-адреноблокаторы оказывают выраженный антиишемический эффект. Необходимо отметить, что антиишемическая активность бета-адреноблокаторов соизмерима с активностью антагонистов кальция и нитратов, но, в отличие от этих групп, бета-адреноблокаторы не только улучшают качество, но и увеличивают продолжительность жизни пациентов с ИБС. Согласно результатам метаанализа 27 многоцентровых исследований, в которых приняло участие более 27 тыс. человек, селективные бета-адреноблокаторы без внутренней симпатомиметической активности у больных с острым коронарным синдромом в анамнезе снижают риск развития повторного ИМ и смертность от инфаркта на 20% [1].

Однако не только селективные бета-адреноблокаторы положительно влияют на характер течения и прогноз у пациентов с ИБС. Неселективный бета-адреноблокатор карведилол также продемонстрировал очень хорошую эффективность у больных со стабильной стенокардией. Высокая антиишемическая эффективность данного препарата объясняется наличием дополнительной альфа1-блокирующей активности, способствующей дилятации коронарных сосудов и коллатералей постстенотической области, а значит — улучшению перфузии миокарда. Кроме того, карведилол обладает доказанным антиоксидантным эффектом, связанным с захватом свободных радикалов, высвобождающихся в период ишемии, что обусловливает его дополнительное кардиопротекторное действие. Одновременно карведилол блокирует апоптоз (программируемая смерть) кардиомиоцитов в зоне ишемии, сохраняя объем функционирующего миокарда. Как было показано, метаболит карведилола (ВМ 910228) обладает меньшим бета-блокирующим эффектом, но является активным антиоксидантом, блокируя перекисное окисление липидов, «отлавливая» активные свободные радикалы OH–. Этот дериват сохраняет инотропный ответ кардиомиоцитов на Ca++, внутриклеточная концентрация которого в кардиомиоците регулируется Ca++-насосом саркоплазматического ретикулума. Поэтому карведилол оказывается более эффективным в лечении ишемии миокарда через ингибирование повреждающего действия свободных радикалов на липиды мембран субклеточных структур кардиомиоцитов [2].

Благодаря этим уникальным фармакологическим свойствам, карведилол может превосходить традиционные бета1-селективные адреноблокаторы в плане улучшения перфузии миокарда и способствовать сохранению систолической функции у больных ИБС. Как показано Das Gupta et al., у больных с дисфункцией ЛЖ и сердечной недостаточностью, развившейся вследствие ИБС, монотерапия карведилолом снижала давление наполнения, а также увеличивала фракцию выброса (ФВ) ЛЖ и улучшала показатели гемодинамики, при этом не сопровождаясь развитием брадикардии [3].

Согласно результатам клинических исследований у больных хронической стабильной стенокардией, карведилол снижает ЧСС в покое и при физической нагрузке, а также увеличивает ФВ в покое. Сравнительное исследование карведилола и верапамила, в котором принимало участие 313 пациентов, показало, что, по сравнению с верапамилом, карведилол в большей степени уменьшает ЧСС, систолическое АД и произведение ЧСС ´ АД при максимально переносимой физической нагрузке. Более того, карведилол обладает более благоприятным профилем переносимости [4].
Важно, что карведилол, по-видимому, более эффективен при лечении стенокардии, чем обычные бета1-адреноблокаторы. Так, в ходе 3-месячного рандомизированного многоцентрового двойного слепого исследования карведилол напрямую сравнивали с метопрололом у 364 пациентов со стабильной хронической стенокардией. Они принимали карведилол по 25–50 мг два раза в сутки или метопролол по 50–100 мг два раза в сутки [5]. В то время как оба препарата продемонстрировали хорошее антиангинальное и противоишемическое действие, карведилол более значительно увеличивал время до депрессии сегмента ST на 1 мм при физической нагрузке, чем метопролол. Переносимость карведилола была очень хорошей, и, что важно, при увеличении дозы карведилола не произошло заметных изменений типов нежелательных явлений.

Примечательно, что карведилол, не обладающий, в отличие от других бета-адреноблокаторов, кардиодепрессивным действием, улучшает качество и продолжительность жизни пациентов с острым ИМ (CHAPS) [6] и постинфарктной ишемической дисфункцией ЛЖ (CAPRICORN) [7]. Многообещающие данные были получены в ходе исследования Carvedilol Heart Attack Pilot Study (CHAPS) — пилотного исследования влияния карведилола на развитие ИМ. Это было первое рандомизированное исследование, в котором сравнивали карведилол с плацебо у 151 больного после острого ИМ. Лечение начинали в течение 24 часов с момента появления болей в грудной клетке, а дозу препарата увеличивали до 25 мг два раза в сутки. Главными конечными точками исследования были функция ЛЖ и безопасность препарата. Больных наблюдали в течение 6 месяцев с момента начала заболевания. Согласно полученным данным, частота развития серьезных кардиальных событий уменьшилась на 49%.

Полученные в ходе исследования CHAPS эхографические данные 49 пациентов со сниженной ФВ ЛЖ (

А. М. Шилов*, доктор медицинских наук, профессор
М. В. Мельник*, доктор медицинских наук, профессор
А. Ш. Авшалумов**

*ММА им. И. М. Сеченова, Москва
**Клиника Московского института кибернетической медицины, Москва

Источник

Кардиодепрессия при тяжелом остром панкреатите: механизмы развития и возможные подходы к лечению. Обзор литературы

Для корреспонденции: Андреенков Вячеслав Сергеевич — ординатор, Институт высшего и дополнительного профессионального образования, Москва; e-mail: slav-and@yandex.ru

Для цитирования: Ершов А.В., Андреенков В.С., Манасова З.Ш. Кардиодепрессия при тяжелом остром панкреатите: механизмы развития и возможные подходы к лечению. Обзор литературы. Вестник интенсивной терапии им. А.И. Салтанова. 2020;1:66–74. DOI: 10.21320/1818-474X-2020-1-66-74

Реферат

Кардиодепрессия, известная также как миокардиальная депрессия, является одним из характерных осложнений тяжелого острого панкреатита. В обзоре изложены современные взгляды на механизм развития этого феномена; обсуждено место термина «фактор депрессии миокарда» на текущей стадии изучения этой проблемы; выявлены патогенетические факторы миокардиальной депрессии, требующие дальнейшего изучения. Была предпринята попытка рассмотреть кардиодепрессию как явление, вовлекающее целостную сердечно-сосудистую систему, а не только сердце. Каждый патогенетический фактор рассмотрен с точки зрения значимости в прогрессировании заболевания и возможности его коррекции.

Ключевые слова: острый панкреатит, миокард, гемодинамика, шок, цитокины, трипсин, гиповолемия, электролиты

Поступила: 28.11.2019

Принята к печати: 02.03.2020

Острый панкреатит (ОП) — заболевание, характеризующееся одновременно высокой заболеваемостью (34 случая заболевания на 100 000 населения в год) и летальностью (15 % в группе тяжелого панкреатита) [1, 2]. Причины смерти при тяжелом ОП комплексные: развитие синдрома системной воспалительной реакции, коагулопатии, шока и в итоге — полиорганной недостаточности. Ключевым фактором развития полиорганной недостаточности являются нарушения сердечно-сосудистой системы, в том числе миокардиальная депрессия (МД) [3]. Этот феномен может стать одной из мишеней лечения шока, что требует детального изучения патогенетических факторов МД при ОП.

История изучения феномена: «фактор депрессии миокарда»

Характерный для ОП феномен угнетения сократительной и метаболической активности миокарда, известный также как кардиодепрессия (КД) или МД, вызвал пристальное внимание в начале 80-х гг. прошлого века [4–6]. Однако, несмотря на многочисленные исследования этой проблемы, единой концепции патогенеза нарушения сократимости миокарда при ОП в настоящее время не разработано [3]. Первые крупные исследования, посвященные этой проблеме, объединяли патогенетические факторы, воздействующие на миокард под общим термином «фактор депрессии миокарда» [6].

Термин «фактор депрессии миокарда» был введен в 1947 г. и первоначально был применен к геморрагическому шоку [7]. Более поздние исследования ссылаются на него при объяснении причин КД при сепсисе, ОП и ряде других заболеваний [3]. Обычно под этим названием кроется субстанция, циркулирующая в крови и вызывающая КД при действии на миокард [3, 8]. Несмотря на длительный период изучения, структура этого вещества или смеси веществ остается неизвестной, а точки приложения его неясны [9–11].

Вопрос о том, что может скрываться под этим «фактором», заслуживает отдельной дискуссии. Известно, что этот «фактор» циркулирует в крови при ряде критических состояний. Это подтверждается тем, что плазма крови больного животного, перелитая здоровому, вызывает у последнего МД [6]. В связи с этим маловероятно, что нарушения автономной нервной системы, гиповолемия и интраабдоминальная гипертензия являются этим фактором. Известно также, что «фактор миокардиальной депрессии» имеет высокую биологическую активность даже в минимальных дозах [8], что делает электролитные нарушения не подходящими под это определение.

На наш взгляд, под таким названием может скрываться уже известное соединение. Исходя из описания, «фактором депрессии миокарда», выделяющимся в результате ОП, могут быть те же соединения, которые циркулируют в крови при сепсисе: цитокины или бактериальные эндотоксины [7]. При этом не исключена роль ряда других соединений, ответственных за КД при сепсисе [12]. Дополнительной субстанцией, подходящей под описание «фактора депрессии миокарда» при ОП, являются панкреатогенные ферменты [3].

Цитокины и бактериальные эндотоксины: острый панкреатит и сепсис

Действие на миокард цитокинов является наиболее изученным патогенетическим фактором МД. В ответ на ферментативное повреждение поджелудочной железы активируется секреция иммунными клетками провоспалительных цитокинов [13]. При выходе их в системный кровоток происходит как прямое, так и опосредованное повреждение миокарда.

Прямое действие циркулирующих в плазме цитокинов на миокард хорошо изучено. Однако большинство исследований в этой области относится к модели сепсиса, что не позволяет полностью перенести их результаты на ОП. Вместе с тем сепсис и тяжелый ОП имеют ряд общих звеньев патогенеза и похожий профиль гемодинамических нарушений [3], из чего логично предположить, что цитокины могут иметь сходное действие на миокард при этих двух заболеваниях. Поэтому далее речь пойдет об опосредованной цитокинами КД не только при ОП, но и при сепсисе.

Данные о действии цитокинов на миокард при сепсисе противоречивы. В результате ряда исследований было показано, что провоспалительные цитокины могут вызывать гемодинамические нарушения. Фактор некроза опухоли альфа и интерлейкин-1, являясь центральным звеном в активации системного воспаления, вызывают значительные гемодинамические нарушения в модели сепсиса. Ряд исследований подтверждает роль интерлейкинов в МД при сепсисе [9, 12]. Одно из исследований гемодинамических показателей при тяжелом ОП подтверждает гипотезу о действии цитокинов на миокард при сепсисе и тяжелом ОП: концентрация интерлейкина-6 по его результатам имеет корреляцию с гемодинамическими нарушениями при деструктивном панкреатите [3]. Удаление из плазмы цитокинов при ОП путем гемосорбции в результате ряда экспериментов приводило к быстрому улучшению состояния пациента и стабилизации гемодинамики [14–17], что может свидетельствовать об их важной роли в патогенезе КД.

Группой исследователей предположено, что действие цитокинов на миокард должно приводить к диастолической дисфункции сердца [18]. Профиль нарушений функции миокарда при ОП подтверждает высказанное предположение [18–19]. Таким образом, последствия выделения в системный кровоток цитокинов на миокард требуют дальнейшего изучения.

Опосредованное цитокинами системное воспаление обладает непрямым повреждающим действием на миокард, реализующимся через несколько механизмов. Так, в ответ на системное воспаление при ОП ряд цитокинов вырабатывается в самом миокарде, что вызывает его дегенеративные и воспалительные изменения [20, 22]. Другим механизмом опосредованной КД является действие цитокинов на эндотелий сосудов. В одном из исследований показано, что в результате такого воздействия развивается диффузное нарушение микроциркуляции [23], что также может оказывать кардиодепрессивный эффект.

Системное воспаление приводит также к ряду изменений системы гемостаза: активации свертывающей и нарушению работы противосвертывающей системы крови, торможению фибринолиза и повышенной агрегации тромбоцитов [24, 25]. Результатом этого является гиперкоагуляция, которая может вызывать тромбоз коронарных артерий [26]. С целью коррекции микроциркуляторных нарушений и профилактики тромбозов при тяжелом ОП рядом авторов предложено использование препаратов гепарина. Проведенные исследования этого метода лечения подтверждают его эффективность, что связывают с улучшением микроциркуляции за счет профилактики образования микротромбов и противовоспалительным действием гепарина [24, 26–29].

На выделении цитокинов сходство сепсиса и тяжелого ОП не заканчивается. В результате ОП происходит нарушение барьерной функции кишечника. Это приводит к попаданию в кровь бактериальных эндотоксинов [30–32], что является одним из общих патогенетических факторов развития этих состояний. Вероятно, механизм действия эндотоксинов при ОП также сходен с таковым при сепсисе: эндотоксины, действуя на Toll-подобные рецепторы, вызывают активацию ядерного фактора каппа-би (NFκB), что приводит к усилению воспаления и МД [7, 9, 12]. Доказательством роли бактериальных эндотоксинов при ОП может быть изменение гемодинамики, по ряду параметров похожее на таковое при сепсисе [3, 33].

Наличие в крови пациентов с ОП субстанций, вызывающих МД, таких как цитокины и бактериальные эндотоксины, позволяет использовать их в качестве мишеней для предотвращения и купирования КД. Как было упомянуто выше, способом воздействия на цитокины и бактериальные эндотоксины являются методы экстракорпорального очищения крови, и в первую очередь — гемофильтрация, гемосорбция и плазмаферез. Данные исследований подтверждают, что очищение крови путем гемофильтрации способно снизить концентрацию провоспалительных цитокинов и активность эндотоксина [34, 35]. Метаанализ исследований, посвященных эффективности применения высокообъемной гемофильтрации, показал достоверное улучшение ряда показателей при ОП, в том числе снижение летальности и уменьшение оценки по шкале APACHE II [36]. Другой метод очищения крови, гемосорбция, также показывает положительный результат при применении в целях сорбции цитокинов при ОП [14–17, 37]. Отечественными учеными также показана эффективность плазмафереза при инфицированном панкреонекрозе [38]. Однако эффективность и гемофильтрации, и гемосорбции, и плазмафереза при ОП имеет очень скудную доказательную базу, что не позволяет рекомендовать их как обязательный элемент лечения тяжелого ОП и указывает на необходимость проведения крупных рандомизированных исследований [39, 40].

Протеолитические ферменты: цель терапии?

В системный кровоток, помимо цитокинов и бактериальных эндотоксинов, при тяжелом ОП попадают протеолитические ферменты поджелудочной железы, что является результатом разрушения микро- и макроструктуры ее ткани [13]. Среди панкреатических ферментов наиболее изучено действие на миокард трипсина. В эксперименте он и другие протеолитические ферменты вызывают фокальный некроз скелетной и сердечной мускулатуры, мембранодеструкцию кардиомиоцитов. Деструктивные эффекты протеолитических ферментов на миокард подтверждаются также повышением концентрации аспартатаминотрансферазы в перфузате в ходе эксперимента на изолированном сердце [10]. Эти эффекты трипсина и других ферментов могут быть как непосредственным следствием протеолитической активности, так и опосредоваться активацией воспалительного ответа нейтрофилами [41–43]. Следствием их активации является высвобождение реактивных форм кислорода, в результате которого повышается проницаемость мембран митохондрий и снижается выработка аденозинтрифосфата [44]. Этот механизм универсален и действует на все органы и ткани, в том числе и на миокард. Действие трипсина опосредуется также нарушением микроциркуляции в результате активации системы комплемента, свертывающей и фибринолитической систем крови. В условиях такого нарушения, потенцированного действием иных повреждающих факторов, создаются предпосылки для активации свободнорадикального окисления и перекисного окисления липидов [10, 24]. Активация трипсином рецептора, активируемого протеазами-2 (PAR2), в эксперименте приводит к развитию гипотензии (за счет снижения тонуса сфинктеров артериол) и усиливает воспаление [45]. Последнее может объяснить связь повышения концентрации этого фермента с нарушениями гемостаза [24].

Важность концентрации активированных ферментов для диагностики ОП бесспорна: повышение концентрации амилазы и липазы фигурирует во всех современных рекомендациях по диагностике и лечению ОП [2]. Однако роль ферментов поджелудочной железы в развитии гемодинамических нарушений и развитии МД часто оценивается как минимальная [46]. Это мнение имеет основание: ингибиторы сериновых протеаз, по данным ряда метаанализов, не показали своей клинической эффективности [47]. Вместе с тем возможным методом лечения гиперферментемии может стать плазмаферез [48], однако доказательная база этого метода минимальна и противоречива. Таким образом, панкреатогенные ферменты являются важной составляющей для диагностики ОП, но доказавших свою эффективность способов лечебного воздействия на них нет.

Пути связи сердца и поджелудочной железы

Обычно исследователи рассматривали передачу гуморальных факторов, вызывающих депрессию миокарда, только через системный кровоток. Однако гуморальные факторы, выделяющиеся при ОП из поджелудочной железы, могут попадать в системный кровоток не напрямую, а через лимфатическую систему, тем самым минуя инактивацию в печени, о чем постулирует гипотеза «кишечник–лимфа» [49, 50]. Одной из тканей, которые должны быть подвержены влиянию такой лимфы, является миокард: он первым встречается на пути оттока лимфы в системный кровоток. Это предположение подтверждается исследованием, в ходе которого был смоделирован ОП. Особенностью модели стало исключение гипотензии как фактора КД. В результате такого ОП наблюдалось снижение сердечного выброса, сократимости и расслабления желудочков. Более того, лигирование грудного протока предотвращало появление подобных изменений. Гистологически в миокарде после такого эксперимента был обнаружен отек, что, по мнению авторов, и могло послужить причиной КД [51].

Другим путем передачи гуморальных факторов, вызывающих КД, является паракринный. Исходя из этого выдвинуто предположение, что воспаление, начавшееся в поджелудочной железе, может передаваться трансдиафрагмально на миокард, вызывая его повреждение. Эти данные подтверждаются преимущественной локализацией ишемических изменений в миокарде на электрокардиограмме при ОП на нижней стенке [41].

Путь передачи веществ, вызывающих МД, через лимфу имеет клиническое значение: существует метод экстракорпоральной детоксикации, воздействующий на лимфу, — лимфосорбция [52]. Применение этого способа детоксикации представляется патофизиологически обоснованным, однако высокая травматичность доступа к грудному лимфатическому протоку и слабая доказательная база препятствуют внедрению метода в практику [50].

Электролитные нарушения

Патогенез ОП тесно связан также с электролитными нарушениями. Причины таких нарушений ясны не до конца. Однако известно, что типичными для ОП являются нарушения электролитного состава в виде гипокальциемии, гипофосфатемии, гипо- или гиперкалиемии, гипомагниемии [3, 41, 27, 53]. Механизм развития гипокальциемии на ранних стадиях ОП достоверно неизвестен, однако предложено несколько гипотез, объясняющих развитие этого явления: связывание ионизированого кальция свободными жирными кислотами, выделяющимися при аутолизе мезентериальной клетчатки панкреатическими ферментами; развитие транзиторного гипопаратиреоидизма и гипомагниемии [53]. Гипокальциемия приводит к повышению проницаемости мембран кардиомиоцитов для ионов натрия, что вызывает прогрессирующую деполяризацию и может вызывать повреждение миокарда [42, 46]. Снижение трансмембранного потока ионов кальция при гипокальциемии вызывает снижение сократимости миокарда [53]. Потенциальный механизм развития гипомагниемии при ОП — реакция омыления между свободным магнием плазмы и липидами некротизированной мезентериальной клетчатки, в результате чего свободный магний оказывается связанным [54]. Механизмы повреждения миокарда при гипомагниемии множественны. Гипомагниемия может вызывать повреждение миокарда за счет коронарного вазоспазма [41, 43]. Кроме того, синусовая тахикардия, вызванная этим электролитным нарушением, способна усугублять ишемию миокарда, вызванную иными причинами [19, 55]. Увеличение интервала QT на электрокардиограмме, характерное для гипомагниемии, может косвенно свидетельствовать о нарушении диастолического расслабления миокарда, что характерно для МД при ОП, однако это утверждение требует дальнейших исследований [54, 56]. Гипофосфатемия может угнетать сократимость миокарда при помощи ряда механизмов, и в первую очередь — за счет замедления синтеза аденозинтрифосфата [57]. Случаи тяжелой гипофосфатемии описаны для ОП, связанного с хроническим алкоголизмом. Вместе с тем значимая гипофосфатемия в отсутствие алкоголизма редка [58].

Электролитные нарушения, приводящие к КД, могут также иметь не системный, а локальный характер. Так, причиной КД при ОП может являться повреждение ионных насосов, ответственных за выведение ионов кальция из саркоплазматического ретикулума, и, таким образом, расслабление миокарда [19]. Следствием этого должно быть нарушение диастолического расслабления миокарда, что подтверждается как в эксперименте, так и клинически [18, 19, 43].

Миокардиальная депрессия в условиях целостного организма

Во многих исследованиях, приведенных выше, сердце рассматривается как изолированная система, при действии на которую определенных гуморальных факторов происходят морфологические и гемодинамические нарушения. Однако многие расстройства гемодинамики при ОП появляются на фоне интактного миокарда. Это создало предпосылки для изучения МД не как явления, в которое вовлечен только миокард, но как явления, в которое вовлечена вся сердечно-сосудистая система. К наиболее изученным из таких явлений относятся гипотензия, гиповолемия, интраабдоминальная гипертензия и активация блуждающего нерва.

Системным явлением, ярко отражающимся как на системной гемодинамике, так и на функциональных свойствах миокарда, является гиповолемия. Гиповолемия при ОП связана с секвестрацией жидкости «в третье пространство», внешними потерями (рвота и диарея) и повышением капиллярной проницаемости на фоне системного воспаления [59–61]. Одним из ключевых факторов, вызывающих депрессию миокарда при ОП, может быть гипотензия, связанная c гиповолемией, следствием чего является ишемия миокарда [10, 18, 42]. Объем и состав используемых инфузионных сред при тяжелом ОП — одна из самых дискутабельных тем, касающихся лечения этого заболевания [3, 60, 62–64]. Результаты исследований в этой области имеют очень противоречивый характер, что связано в первую очередь с отличиями в дизайне экспериментов. На наш взгляд, рекомендации Всемирного общества неотложной хирургии наиболее точно отражают требования к инфузионной терапии при ОП: объем инфузии должен быть выбран индивидуально с целью поддержания адекватной перфузии тканей (которая определяется как клиническими, так и лабораторными признаками), а средой выбора являются изотонические сбалансированные кристаллоиды [2].

Другое характерное для ОП явление — интраабдоминальная гипертензия — также влечет за собой нарушение гемодинамики. Она способна вызывать снижение сердечного выброса, артериального давления и органной перфузии. Эти эффекты опосредованы через снижение венозного возврата и увеличение постнагрузки на левый желудочек [65, 66]. Существует ряд методов контроля внутрибрюшного давления. Наиболее простой способ — это снижение объема инфузионных сред, доз седативных и вазоактивных препаратов [2]. В ряде исследований показано, что интраабдоминальное давление может быть снижено применением гемофильтрации, что объясняется удалением избытка жидкости и снижением концентрации цитокинов [67, 68]. Кроме того, снижения внутрибрюшного давления можно добиться чрескожным дренированием жидкостных образований, нередко осложняющих тяжелый ОП. Миорелаксация и хирургическая декомпрессия рассматриваются как способ снижения внутрибрюшного давления в случае неэффективности других методов [2, 66].

Еще одно явление, вовлекающее сердечно-сосудистую систему и характерное для ОП, — стимуляция блуждающего нерва. Она может приводить к повреждению миокарда как в результате прямого, так и непрямого (уменьшение коронарного кровотока и усиление секреции трипсина) воздействия [42, 43, 46]. Вместе с тем в ряде исследований стимуляция блуждающего нерва имеет протекторное влияние на миокард [69]. Таким образом, суммарное влияние стимуляции блуждающего нерва остается неясным.

Заключение

За последние годы было открыто и изучено множество механизмов МД. В связи с появлением новых диагностических методик стало возможным изучение миокардиальной экспрессии цитокинов и действия на миокард бактериальных эндотоксинов. Благодаря новым данным в области патогенеза КД термин «фактор миокардиальной депрессии» можно считать «собирательным понятием», объединяющим эффекты ряда неспецифических веществ. Однако вклад того или иного механизма в кардиальную депрессию остается неизученным. Результаты этих исследований зачастую противоречивы и требуют дополнительных экспериментов и клинических исследований. Как мы указали в обзоре, ряд патогенетических факторов может рассматриваться как цель для интенсивной терапии тяжелого ОП, однако доказательная база методов, направленных на эти факторы, минимальна. Методы патогенетической терапии КД представлены на рис. 1 [2, 14, 13, 17, 28, 32, 37, 50, 51, 63, 65].

кардиодепрессивный эффект что это. Смотреть фото кардиодепрессивный эффект что это. Смотреть картинку кардиодепрессивный эффект что это. Картинка про кардиодепрессивный эффект что это. Фото кардиодепрессивный эффект что это

Рис. 1. Патогенез кардиодепресии при остром панкреатите и потенциальные методы ее коррекции

ИП — ингибиторы протеаз; ПЖ — поджелудочная железа; ПФ — протеолитические ферменты.

Несмотря на совершенствование методов лечения, ОП остается заболеванием с высокой летальностью, весомый вклад в которую вносит кардиодепрессия. Это требует дальнейшего изучения патогенеза миокардиальной депрессии с целью дальнейшего поиска возможностей по ее предотвращению.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

ORCID авторов

Ершов А.В. — 0000-0001-5758-8552

Андреенков В.С. — 0000-0002-4388-6601

Манасова З.Ш. — 0000-0002-3003-4362

Литература

Petrov M.S., Yadav D. Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 2019; 16(3): 175–184. DOI: 10.1038/s41575-018-0087-5

Leppäniemi A., Tolonen M., Tarasconi A., et al. 2019 WSES guidelines for the management of severe acute pancreatitis. World J Emerg Surg. 2019; 14(1): 17–27. DOI: 10.1186/s13017-019-0247-0

Yegneswaran B., Kostis J.B., Pitchumoni C.S. Cardiovascular manifestations of acute pancreatitis. J Crit Care. 2011; 26(2): 225.e11–225.e18. DOI: 10.1016/j.jcrc.2010.10.013

Lee W.K., Frasca M., Lee C., et al. Depression of myocardial function during acute pancreatitis. Circ Shock. 1981; 8(3): 369–374

Bradley III E.L., Hall J.R., Lutz J., et al. Hemodynamic consequences of severe pancreatitis. Ann Surg. 1983; 198(2): 130–133. DOI: 10.1097/00000658-198308000-00002

Pitchumoni C.S., Agarwal N., Jain N.K. Systemic Complications of Acute Pancreatitis. Am J Gastroenterol. 1988; 83(6): 597–606. DOI: 10.1111/j.1572-0241.1988.tb02431.x

Fernandes Jr. C.J., De Assuncao M.S.C. Myocardial dysfunction in sepsis: A large, unsolved puzzle. Crit Care Res Pract. 2012; 2012: 1–9. DOI: 10.1155/2012/896430

Parrillo J.E., Burch C., Shelhamer J.H., et al. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest. 1985; 76(4): 1539–1553. DOI: 10.1172/JCI112135

Antonucci E., Fiaccadori E., Donadello K., et al. Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. J Crit Care. 2014; 29(4): 500–511. DOI:10.1016/j.jcrc.2014.03.028

Buğdacı M.S., Tüzün A., Koca H., et al. QT interval changes and reversibility of QT dispersion in patients with acute pancreatitis. Turk J Gastroenterol. 2014; 25: 59–62. DOI: 10.5152/tjg.2014.4960

Lv X., Wang H. Pathophysiology of sepsis-induced myocardial dysfunction. Mil med res. 2016; 3(1): 30–40. DOI: 10.1186/s40779-016-0099-9

Garg P.K., Singh V.P. Organ Failure Due to Systemic Injury in Acute Pancreatitis. Gastroenterology. 2019; 156(7): 2008–2023. DOI: 10.1053/j.gastro.2018.12.041

Bonavia A., Groff A., Karamchandani K., et al. Clinical utility of extracorporeal cytokine hemoadsorption therapy: A literature review. Blood Purif. 2018; 46(4): 337–349. DOI: 10.1159/000492379

Huber W., Algül H., Lahmer T., et al. Pancreatitis cytosorbents (CytoSorb) inflammatory cytokine removal: A Prospective Study (PACIFIC). Medicine (Baltimore). 2019; 98(4): e13044. DOI: 10.1097/MD.0000000000013044

Tomescu D., Popescu M., David C., et al. Clinical effects of hemoadsorption with CytoSorb® in patients with severe acute pancreatitis: A case series. Int J Artif Organs. 2019; 42(4): 190–193. DOI: 10.1177/0391398818823762

Thandassery R.B., Choudhary N., Bahl A., et al. Characterization of cardiac dysfunction by echocardiography in early severe acute pancreatitis. Pancreas. 2017; 46(5): 626–630. DOI: 10.1097/MPA.0000000000000820

Meyer A., Kubrusly M.S., Salemi V.M., et al. Severe acute pancreatitis: A possible role of intramyocardial cytokine production. J Pancreas. 2014; 15(3): 237–242. DOI: 10.6092/1590–8577/2171

Landesberg G., Levin P.D., Gilon D., et al. Myocardial dysfunction in severe sepsis and septic shock: No correlation with inflammatory cytokines in real-life clinical setting. Chest. 2015; 148(1): 93–102. DOI: 10.1378/chest.14-2259

Amaral R.C., Barbeiro D.F., Koike M.K., et al. Cytokine and chemokine levels in the heart tissue of aged rats following severe acute pancreatitis. Eur J Inflamm. 2017; 15(2): 102–106. DOI: 10.1177/1721727X17712398

Tomkötter L., Erbes J., Trepte C., et al. The Effects of Pancreatic Microcirculatory Disturbances on Histopathologic Tissue Damage and the Outcome in Severe Acute Pancreatitis. Pancreas. 2016; 45(2): 248–253. DOI: 10.1097/MPA.0000000000000440

Dumnicka P., Maduzia D., Ceranowicz P., et al. The interplay between inflammation, coagulation and endothelial injury in the early phase of acute pancreatitis: Clinical implications. Int J Mol Sci. 2017; 18(2). DOI: 10.3390/ijms18020354

Sanghvi S., Waqar F., Effat M. Coronary thrombosis in acute pancreatitis. J Thromb Thrombolysis. 2019; 47(1): 157–161. DOI: 10.1007/s11239-018-1741-z

Adeel M.Y., Clarke J.-D., Shetty S., et al. Severe hypocalcemia mimicking acute inferior ST-segment elevation myocardial infarction. Oxf Med Case Rep. 2018; 12: 438–441. DOI: 10.1093/omcr/omy103

Kambhampati S., Park W., Habtezion A. Pharmacologic therapy for acute pancreatitis. World J Gastroenterol. 2014; 20(45): 16868–16880. DOI: 10.3748/wjg.v20.i45.16868

Tozlu M., Kayar Y., Ince AT., et al. Low molecular weight heparin treatment of acute moderate and severe pancreatitis: A randomized, controlled, open-label study. Turk J Gastroenterol. 2019; 30(1): 81–87. DOI: 10.5152/tjg.2018.18583

Shen Q.-X., Xu G.-X., Shen M-H. Effect of early enteral nutrition (EN) on endotoxin in serum and intestinal permeability in patients with severe acute pancreatitis. Eur Rev Med Pharmacol Sci. 2017; 21(11): 2764–2768.

Xu H., Zeng Y. Mechanism of gut barrier failure associated with severe acute pancreatitis. World Chin J Dig. 2016; 24(17): 2661–2666. DOI: 10.11569/wcjd.v24.i17.2661

Schietroma M., Pessia B., Carlei F., et al. Intestinal permeability and systemic endotoxemia in patients with acute pancreatitis. Ann Ital Chir. 2016; 87(2): 138–144.

Wilkman E., Kaukonen K.-M., Pettilä V., et al. Early hemodynamic variables and outcome in severe acute pancreatitis: A retrospective single-center cohort study. Pancreas. 2013; 42(2): 272–278. DOI: 10.1097/MPA.0b013e318264c9f7

Liu C., Li M., Cao S., et al. Effects of HV-CRRT on PCT, TNF-α, IL-4, IL-6, IL-8 and IL-10 in patients with pancreatitis complicated by acute renal failure. Exp Ther Med. 2017; 14(4): 3093–3097. DOI: 10.3892/etm.2017.4843

Dai S.R., Li Z., Zhang J.B. Serum interleukin 17 as an early prognostic biomarker of severe acute pancreatitis receiving continuous blood purification. Int J Artif Organs 2015; 38(4): 192–198. DOI: 10.5301/ijao.5000406

Hu Y., Xiong W., Li C., et al. Continuous blood purification for severe acute pancreatitis: A systematic review and meta-analysis. Medicine (Baltimore). 2019; 98(12): e14873. DOI: 10.1097/MD.0000000000014873

Atan R., Crosbie D., Bellomo R. Techniques of extracorporeal cytokine removal: A systematic review of the literature on animal experimental studies. Int J Artif Organs. 2013; 36(3): 149–158. DOI:10.5301/ijao.5000128

Cheng Y., Gong J., Ding X., et al. Continuous veno-venous hemofiltration for severe acute pancreatitis. Cochrane Database Syst Rev. 2018; 2018(2). DOI: 10.1002/14651858.CD012959

De Waele E., Malbrain M.L.N.G., Spapen H.D. How to deal with severe acute pancreatitis in the critically ill. Curr Opin Crit Care. 2019; 25(2): 150–156. DOI: 10.1097/MCC.0000000000000596

Yu E.S., Lange J.J., Broor A., et al. Acute pancreatitis masquerading as inferior wall myocardial infarction: A review. Case Rep Gastroenterol. 2019; 13(2): 321–335. DOI: 10.1159/000501197

Kumar A.V., Mohan Reddy G., Anirudh Kumar A. Acute pancreatitis complicated by acute myocardial infarction — A rare association. Indian Heart J. 2013; 65(4): 474–477. DOI: 10.1016/j.ihj.2013.06.009

Prasada R., Dhaka N., Bahl A., et al. Prevalence of cardiovascular dysfunction and its association with outcome in patients with acute pancreatitis. Indian J Gastroenterol. 2018; 37(2): 113–119. DOI: 10.1007/s12664-018-0826-0

Singh P., Garg P.K. Pathophysiological mechanisms in acute pancreatitis: Current understanding. Indian J Gastroenterol. 2016; 35(3): 153–166. DOI: 10.1007/s12664-016-0647-y

Heuberger D.M., Schuepbach R.A. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thrombosis J. 2019; 17(1). DOI:10.1186/s12959-019-0194-8

Antonelli D., Rozner E., Turgeman Y. Unusual electrocardiographic changes during acute pancreatitis. Cor Vasa. 2017; 59(5): e446–e449. DOI: 10.1016/j.crvasa.2016.07.001

Seta T., Noguchi Y., Shikata S., et al. Treatment of acute pancreatitis with protease inhibitors administered through intravenous infusion: An updated systematic review and meta-analysis. BMC Gastroenterol. 2014; 14(1). DOI: 10.1186/1471-230X-14-102

Deitch E.A. Gut lymph and lymphatics: A source of factors leading to organ injury and dysfunction. Ann New York Acad Sci. 2010; 1207: E103–E111. DOI: 10.1111/j.1749-6632.2010.05713.x

Windsor J.A., Escott A., Brown L., et al. Novel strategies for the treatment of acute pancreatitis based on the determinants of severity. J Gastroenterol Hepatol. 2017; 32(11): 1796–1803. DOI: 10.1111/jgh.13784

Shanbhag S.T., Choong B., Petrov M., et al. Acute pancreatitis conditioned mesenteric lymph causes cardiac dysfunction in rats independent of hypotension. Surgery. 2018; 163(5): 1097–1105. DOI: 10.1016/j.surg.2017.12.013

Ahmed A., Azim A., Gurjar M., et al. Hypocalcemia in acute pancreatitis revisited. Indian J Crit Care Med. 2016; 20(3): 173–177. DOI: 10.4103/0972-5229.178182

Huang L., Ma B.W., He F., et al. Electrocardiographic, cardiac enzymes, and magnesium in patients with severe acute pancreatitis. Gastroenterol Nurs. 2012; 35(4): 256–260. DOI: 10.1097/SGA.0b013e31826092a6

Agus Z.S. Mechanisms and causes of hypomagnesemia. Curr Opin Nephrol Hypertens. 2016; 25(4): 301–307. DOI: 10.1097/MNH.0000000000000238

Birda C.L., Kumar S., Bhalla A., et al. Prevalence and prognostic significance of prolonged QTc interval in emergency medical patients: A prospective observational study. Intl J Crit Illn Inj Sci. 2018; 8(1): 28–35. DOI: 10.4103/IJCIIS.IJCIIS_59_17

Ariyoshi N., Nogi M., Ando A., et al. Cardiovascular consequences of hypophosphatemia. Panminerva Med. 2017; 59(3): 230–240. DOI: 10.23736/S0031-0808.17.03331-6

Rizos E., Alexandrides G., Elisaf M.S. Severe hypophosphatemia in a patient with acute pancreatitis. J Pancreas. 2000; 1(4): 204–207. DOI: 10.6092/1590-8577/377

Braha J., Tenner S. Fluid collections and pseudocysts as a complication of acute pancreatitis. Gastrointest Endosc Clin North Am. 2018; 28(2): 123–130. DOI: 10.1016/j.giec.2017.11.001

De-Madaria E., Garg P.K. Fluid therapy in acute pancreatitis — Aggressive or adequate? Time for reappraisal. Pancreatology. 2014; 14(6): 433–435. DOI: 10.1016/j.pan.2014.09.008

Türkvatan A., Erden A., Seçil M., et al. Fluid collections associated with acute pancreatitis: A pictorial essay. Can Assoc Radiol J. 2014; 65(3): 260–266. DOI: 10.1016/j.carj.2013.08.003

Köksal A.S., Parlak E. Fluid resuscitation in acute pancreatitis. Turk J Gastroenterol. 2017; 28(4): 322–323. DOI: 10.5152/tjg.2017.17324

Trikudanathan G., Vege S.S. Current concepts of the role of abdominal compartment syndrome in acute pancreatitis — An opportunity or merely an epiphenomenon. Pancreatology. 2014; 14(4): 238–243. DOI: 10.1016/j.pan.2014.06.002

Mifkovic A., Skultety J., Sykora P., et al. Intra-abdominal hypertension and acute pancreatitis. Bratislava Med J. 2013; 114(3): 166–171. DOI: 10.4149/BLL_2013_036

Xu J., Tian X., Zhang C., et al. Management of abdominal compartment syndrome in severe acute pancreatitis patients with early continuous veno-venous hemofiltration. Hepato-Gastroenterology. 2013; 60(127): 1749–1752. DOI: 10.5754/hge13351

Xu J.-M., Yang H.-D., Tian X.-P. Effects of early hemofiltration on organ function and intra-abdominal pressure in severe acute pancreatitis patients with abdominal compartment syndrome. Clin Nephrol. 2019; 92(5): 243–249. DOI: 10.5414/CN109435

Nuntaphum W., Pongkan W., Wongjaikam S., et al. Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol 2018; 113(4): 22. DOI: 10.1007/s00395-018-0683-0

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *