коэффициент корреляции равный нулю означает что между переменными

Ответы на тесты по эконометрике

1.какое из уравнений регрессии является степенным

2. оценки параметров регрессии являются несмещенными, если

Математическое ожидание остатков равно 0

3.оценки параметров регрессии являются эффективными, если

Оценки обладают наименьшей дисперсией………….оценками

4.оценки параметров регрессии являются состоятельными, если

5.фиктивные переменные – это

6. если качественный фактор имеет 3 градации, то необходимое число фиктивных переменных

7.коэффициент корреляции, равный нулю, означает, что между переменными

Ситуация не определена

9.в эконометрическом анализе Xj рассматриваются

Как случайные величины

10.коэффициент регрессии изменяется в пределах

Принимает любое значение

Методу наименьших квадратов

12.в каких пределах изменяется коэффициент детерминации

13. в хорошо подобранной модели остатки должны

Иметь нормальный закон…..

14. неправильный выбор функциональной формы или объясняющих переменных называется

15.коэффициент детерминации – это

16.величина рассчитанная по формуле r=………………является оценкой

Парного коэффициент Корреляции

17.Выборочный коэффициент Корреляции r по абсолютной величине

Не превосходит единицы

18.компоненты вектора Ei

Имеют нормальный закон

19.применим ли метод наименьших квадратов для расчетов параметров не линейных моделей

20. применим ли метод наименьших квадратов для расчетов параметров показательной зависимости

Применим после ее приведения

21.что показывает коэффициент абсолютного роста

На сколько единиц изменится у, если х изменился на единицу

22.если коэффициент Корреляции положителен, то в линейной модели

С ростом х увеличивается у

23. какая функция используется при моделировании моделей с постоянным ростом

24.в каком случае рекомендуется применять для моделирования показателей с увелич. ростом параболу

Если относительная величина……………………неограниченно

На сколько % изменится……………………………..на 1%

26.табличное значение стьюдента зависит

И от уровня доверительной вероятности, и от числа факторов, включенных в модель и от длины исходного ряда

27.табличное значение критерия фишера зависит от

Только от уровня доверительной вероятности и от числа факторов, включенных в модель

28.какая статистическая характеристика выражена формулой

29.формула t= rxy………….используется для

Проверки существенности коэффициент Корреляции

30.какая статистическая характеристика выражается формулой R?=……………

31.коэффициент корреляции используется для

Определения тесноты связи……………..

Единица измерения фактора…………………показателя

33. оценки параметров парной линейной регрессии находятся по формуле

34.для регрессии y=a+bx из n наблюдений интервал доверия (1-а)% для коэффициент b составит

35.допустим, что зависимость расходов от дохода описывается функцией y=a+bx

Среднее значение у=2……………….равняется

36.для парной регрессии o?b равно

37.зависимость между коэффициентом множественной детерминации (D) и корреляции (R) описывается следующим методом

38. Доверительная вероятность

Вероятность того, что………………..прогнозный интервал

39.для проверки значимости отдельного параметра используют

40.количество степеней свободы для t статистики при проверке значимости параметров регрессии из 35 наблюдений и 3 независимых переменных

41.колиство степеней свободы знаменателей f статистики регрессии из 50 наблюдений и 4 независимых переменных

42.одной из проблем кот. Может возникнуть в многофакторной регрессии и никогда не бывает в парной регрессии, является

Корреляция между независимыми переменными

43.мультиколлинеарность возникает тогда когда

Две и больше независимых…………

44. гетероскедатичность присутствует когда

На сколько % изменится результирующий показатель у при изменении хi на 1%при неизмененном среднем уровне других факторов

46.связь между индексом множественной детерминации R? и скорректированным индексом множественной детерминации RC?(в формуле с сверху R)

47.допустим что для описания одного экономического процесса пригодны 2 модели. Обе адекватны по f критерию фишера. какой предоставить преимущество, у той, у которой:

Большее значения F критерия

48. для регрессии из n наблюдений и m независимых переменных существует такая связь между R? и F

49. значимость частных и парных коэффициент Корреляции проверяется с помощью

T критерия стьюдента

50.если в уравнении регрессии имеется несущественная переменная, то она обнаруживает себя по низкому значению

51. в каком случае модель считается адекватной

52.с помощью какого критерия оценивается значимость коэффициент Регрессии

53.величинав доверительного интервала позволяет установить на сколько надежно предположение о том что

Интервал содержит параметры генеральной совокупности

54.гипотеза об отсутствии автокорреляции остатков доказана, если

55.выберете авторегрессионную модель

56.выберете модель с лагами

Уt= a+b0x1…….(самая длинная формула)

57.какие точки исключаются из временного ряда процедурой сглаживания

Стоящие в начале и в конце временного ряда

58.от чего зависит количество точек, исключаемых в результате сглаживания

От количества точек………………

59.автокорреляция имеется когда

Каждое следующее значение остатков

60.в результате автокорреляции имеем

Неэффективные оценки параметров

61.если мы заинтересованы в использовании атрибутивных переменных для отображения эффекта разных месяцев мы должны использовать

11 атрибутивных методов

62.аддитивная модель временного ряда имеет вид

63.МУЛЬТИПЛИКАТИВНАЯ МОДЕЛЬ ИМЕЕТ ВИД

Характеризует тесноту линейной связи текущего и предыдущего уровней ряда

65.аддитивная модель временного ряда строится

Амплитуда сезонных колебаний возрастает и уменьшается

66.на основе поквартальных данных………..значения 7-1 квартал, 9-2квартал и 11-3квартал…………….

67.эндогенные переменные это

Зависимые переменные, число которых равно числу уравнений……..

Предопределенные переменные, влияющие…………..

69.лаговые переменные это

Значение зависимых переменных за предшествующий период времени

70.для определения параметров структурную форму модели необходимо преобразовать в

Приведенную форму модели

71.уравнение, в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, идентифицируемо если

72. уравнение, в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, Неидентифицируемо если

73. уравнение, в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, сверхидентифицируемо если

74.для определения параметров точно идентифицируемой модели

Применяется косвенный МНК

75. для определения параметров СВЕРХидентифицируемой модели

ПРИМЕНЯЕТСЯ ДВУХШАГОВЫЙ МНК

76.для определения параметров Неидентифицируемой модели

НЕ ОДИН ИЗ СУЩЕСТВУЮЩИХ МЕТОДОВ ПРИМЕНИТЬ НЕЛЬЗЯ

Источник

Что означают положительный, отрицательный и нулевой коэффициенты корреляции?

Опубликовано 29.06.2021 · Обновлено 03.10.2021

Коэффициенты корреляции – это индикаторы силы линейной связи между двумя разными переменными x и y. Коэффициент линейной корреляции больше нуля указывает на положительную взаимосвязь. Значение меньше нуля означает отрицательную связь. Наконец, нулевое значение указывает на отсутствие связи между двумя переменными x и y. В этой статье объясняется значение коэффициента линейной корреляции для инвесторов, как рассчитать ковариацию для акций и как инвесторы могут использовать корреляцию для прогнозирования рынка.

Ключевые выводы:

Понимание корреляции

Коэффициент корреляции ( ρ ) – это мера, которая определяет степень, в которой связано движение двух разных переменных. Наиболее распространенный коэффициент корреляции, генерируемый корреляцией произведения-момента Пирсона, используется для измерения линейной связи между двумя переменными. Однако в нелинейной зависимости этот коэффициент корреляции не всегда может быть подходящей мерой зависимости.

Краткий обзор

При интерпретации корреляции важно помнить, что наличие корреляции между двумя переменными не означает, что одна вызывает другую.

Корреляция и финансовые рынки

На финансовых рынках коэффициент корреляции используется для измерения акции движутся в противоположных направлениях, коэффициент корреляции отрицательный.

Например, предположим, что цены на кофе и компьютеры наблюдаются и обнаруживают корреляцию +,0008. Это означает, что между двумя переменными нет корреляции или взаимосвязи.

Расчет ρ

Стандартное отклонение – это мера разброса данных от среднего значения. Ковариация – это мера того, как две переменные изменяются вместе. Однако его масштабы безграничны, поэтому его трудно интерпретировать. Нормализованная версия статистики вычисляется путем деления ковариации на произведение двух стандартных отклонений. Это коэффициент корреляции.

коэффициент корреляции равный нулю означает что между переменными. Смотреть фото коэффициент корреляции равный нулю означает что между переменными. Смотреть картинку коэффициент корреляции равный нулю означает что между переменными. Картинка про коэффициент корреляции равный нулю означает что между переменными. Фото коэффициент корреляции равный нулю означает что между переменными

Положительное соотношение

Положительная корреляция – когда коэффициент корреляции больше 0 – означает, что обе переменные движутся в одном направлении. Когда ρ равно +1, это означает, что две сравниваемые переменные имеют идеальную положительную взаимосвязь; когда одна переменная движется выше или ниже, другая переменная движется в том же направлении с той же величиной.

Чем ближе значение ρ к +1, тем сильнее линейная зависимость. Например, предположим, что стоимость цен на нефть напрямую связана с ценами на авиабилеты с коэффициентом корреляции +0,95. Взаимосвязь между ценами на нефть и стоимостью авиабилетов имеет очень сильную положительную корреляцию, так как значение близко к +1. Таким образом, если цена на нефть снижается, цены на авиабилеты также уменьшаются, а если цена на нефть растет, то же самое происходит и с ценами на авиабилеты.

На приведенной ниже диаграмме мы сравниваем один из крупнейших банков США, JPMorgan Chase & Co. ( биржевым фондом Financial Select SPDR Exchange Traded Fund (ETF) (XLF ).1 Как вы понимаете, компания JPMorgan Chase & Co. должна иметь положительную корреляцию с банковской отраслью в целом. Мы видим, что коэффициент корреляции в настоящее время составляет 0,98, что свидетельствует о сильной положительной корреляции. Значение выше 0,50 обычно свидетельствует о положительной корреляции.

Понимание корреляции между двумя акциями (или одной акцией) и отраслью может помочь инвесторам оценить, как акции торгуются по сравнению с аналогами. Все типы ценных бумаг, включая облигации, сектора и ETF, можно сравнить с помощью коэффициента корреляции.

Отрицательная корреляция

Примеры отрицательной корреляции

Когда дело доходит до инвестирования, отрицательная корреляция не обязательно означает, что следует избегать ценных бумаг. Коэффициент корреляции может помочь инвесторам диверсифицировать свой портфель, включив в него набор инвестиций, имеющих отрицательную или низкую корреляцию с фондовым рынком. Короче говоря, при снижении риска волатильности в портфеле иногда все же привлекаются противоположности.

Коэффициент линейной корреляции

Даже для небольших наборов данных вычисления коэффициента линейной корреляции могут оказаться слишком длинными, чтобы их можно было выполнять вручную. Таким образом, данные часто загружаются в калькулятор или, что более вероятно, в компьютер или статистическую программу, чтобы найти коэффициент.

Коэффициент Пирсона

Простая линейная регрессия описывает линейную связь между переменной ответа (обозначенной y) и независимой переменной (обозначенной x) с использованием статистической модели. Статистические модели используются для прогнозов.

Краткий обзор

Упростите линейную регрессию, вычислив корреляцию с помощью такого программного обеспечения, как Excel.

В финансах, например, корреляция используется в нескольких анализах, включая расчет стандартного отклонения портфеля. Поскольку это требует много времени, корреляцию лучше всего рассчитать с помощью такого программного обеспечения, как Excel. Корреляция объединяет статистические концепции, а именно дисперсию и стандартное отклонение. Дисперсия – это дисперсия переменной вокруг среднего значения, а стандартное отклонение – это квадратный корень из дисперсии.

Поиск корреляции с помощью Excel

В Excel есть несколько методов расчета корреляции. Самый простой – получить два набора данных рядом и использовать встроенную формулу корреляции:

Если вы хотите создать корреляционную матрицу для ряда наборов данных, в Excel есть подключаемый модуль анализа данных, который находится на вкладке «Данные» в разделе «Анализ».

Выберите таблицу доходов. В этом случае наши столбцы имеют заголовки, поэтому мы хотим установить флажок «Ярлыки в первой строке», чтобы Excel обрабатывал их как заголовки. Затем вы можете выбрать вывод на том же листе или на новом листе.

Как только вы нажмете Enter, данные будут созданы автоматически. Вы можете добавить текст и условное форматирование, чтобы очистить результат.

Часто задаваемые вопросы о коэффициенте линейной корреляции

Что такое коэффициент линейной корреляции?

Коэффициент линейной корреляции – это число, вычисленное на основе заданных данных, которое измеряет силу линейной связи между двумя переменными, x и y.

Как найти коэффициент линейной корреляции?

Корреляция объединяет несколько важных и связанных статистических концепций, а именно дисперсию и стандартное отклонение. Дисперсия – это дисперсия переменной вокруг среднего значения, а стандартное отклонение – это квадратный корень из дисперсии.

коэффициент корреляции равный нулю означает что между переменными. Смотреть фото коэффициент корреляции равный нулю означает что между переменными. Смотреть картинку коэффициент корреляции равный нулю означает что между переменными. Картинка про коэффициент корреляции равный нулю означает что между переменными. Фото коэффициент корреляции равный нулю означает что между переменными

Вычисления слишком длинные, чтобы их можно было выполнять вручную, и программное обеспечение, такое как Excel или статистическая программа, является инструментами, используемыми для вычисления коэффициента.

Что подразумевается под линейной корреляцией?

Как найти коэффициент линейной корреляции на калькуляторе?

Графический калькулятор необходим для расчета коэффициента корреляции.Следующие инструкции предоставлены Statology.

Шаг 1. Включите диагностику

Вам нужно будет сделать этот шаг на калькуляторе только один раз. После этого вы всегда можете начать с шага 2 ниже. Если вы этого не сделаете, r (коэффициент корреляции) не будет отображаться при запуске функции линейной регрессии.

Нажмите [2nd], а затем [0], чтобы войти в каталог вашего калькулятора. Прокрутите, пока не увидите «DiagnosticsOn».

Нажимайте Enter, пока на экране калькулятора не появится надпись «Готово».

Это важно повторить: вам никогда не придется делать это снова, если вы не перезагрузите калькулятор.

Шаг 2: введите данные

Введите свои данные в калькулятор, нажав [STAT], а затем выбрав 1: Edit. Чтобы упростить задачу, вы должны ввести все свои «данные x» в L1 и все «данные y» в L2.

После того, как вы введете свои данные, вы перейдете к [STAT], а затем к меню CALC вверху. Наконец, выберите 4: LinReg и нажмите Enter.

Это оно! Готово! Теперь вы можете просто считать коэффициент корреляции прямо с экрана (его r). Помните, что если r не отображается на вашем калькуляторе, необходимо включить диагностику. Это то же самое место на калькуляторе, где вы найдете уравнение линейной регрессии и коэффициент детерминации.

Коэффициент линейной корреляции может быть полезен при определении взаимосвязи между инвестициями и рынком в целом или другими ценными бумагами. Его часто используют для прогнозирования доходности фондового рынка. Это статистическое измерение полезно во многих отношениях, особенно в финансовой отрасли. Например, это может быть полезно для определения того, насколько хорошо взаимный фонд ведет себя по сравнению с его эталонным индексом, или его можно использовать для определения того, как взаимный фонд ведет себя по отношению к другому фонду или классу активов. Добавляя взаимный фонд с низкой или отрицательной корреляцией к существующему портфелю, можно получить преимущества диверсификации.

Источник

Определение коэффициента корреляции

Опубликовано 20.05.2021 · Обновлено 20.05.2021

Что такое Определение коэффициента корреляции?

Статистику корреляции можно использовать в финансах и инвестировании. Например, коэффициент корреляции может быть рассчитан для определения уровня корреляции между ценой на сырую нефть и ценой акций нефтедобывающей компании, такой как Exxon Mobil Corporation. Поскольку нефтяные компании получают большую прибыль по мере роста цен на нефть, корреляция между двумя переменными очень положительная.

Понимание коэффициента корреляции

Есть несколько типов коэффициентов корреляции, но наиболее распространенным является корреляция Пирсона ( r ). Это измеряет силу и направление линейной зависимости между двумя переменными. Он не может фиксировать нелинейные отношения между двумя переменными и не может различать зависимые и независимые переменные.

Степень силы связи варьируется в зависимости от значения коэффициента корреляции. Например, значение 0,2 показывает, что между двумя переменными существует положительная корреляция, но она слабая и, вероятно, не важна. Аналитики в некоторых областях исследований не считают корреляции важными до тех пор, пока значение не превысит минимум 0,8. Однако коэффициент корреляции с абсолютным значением 0,9 или выше будет представлять очень сильную взаимосвязь.

Краткая справка

Инвесторы могут использовать изменения в статистике корреляции для выявления новых тенденций на финансовых рынках, в экономике и ценах на акции.

Ключевые моменты

Статистика корреляции и инвестирование

Другими словами, инвесторы могут использовать активы или ценные бумаги с отрицательной корреляцией для хеджирования своего портфеля и снижения рыночного риска из-за волатильности или резких колебаний цен. Многие инвесторы хеджируют ценовой риск портфеля, что эффективно снижает любой прирост капитала или убытки, потому что они хотят дивидендного дохода или доходности от акций или ценных бумаг.

Статистика корреляции также позволяет инвесторам определять, когда изменяется корреляция между двумя переменными. Например, акции банка обычно имеют очень положительную корреляцию с процентными ставками, поскольку ставки по кредитам часто рассчитываются на основе рыночных процентных ставок. Если цена акций банка падает, а процентные ставки растут, инвесторы могут понять, что что-то не так. Если цены на акции аналогичных банков в секторе также растут, инвесторы могут сделать вывод, что падение акций банков не связано с процентными ставками. Вместо этого плохо работающий банк, вероятно, имеет дело с внутренней фундаментальной проблемой.

Уравнение коэффициента корреляции

Чтобы вычислить корреляцию момента произведения Пирсона, необходимо сначала определить ковариацию двух рассматриваемых переменных. Затем необходимо вычислить стандартное отклонение каждой переменной. Коэффициент корреляции определяется делением ковариации на произведение стандартных отклонений двух переменных.

коэффициент корреляции равный нулю означает что между переменными. Смотреть фото коэффициент корреляции равный нулю означает что между переменными. Смотреть картинку коэффициент корреляции равный нулю означает что между переменными. Картинка про коэффициент корреляции равный нулю означает что между переменными. Фото коэффициент корреляции равный нулю означает что между переменными

Стандартное отклонение – это мера разброса данных от среднего значения. Ковариация – это мера того, как две переменные изменяются вместе, но ее величина не ограничена, поэтому ее трудно интерпретировать. Разделив ковариацию на произведение двух стандартных отклонений, можно вычислить нормализованную версию статистики. Это коэффициент корреляции.

Часто задаваемые вопросы

Что подразумевается под коэффициентом корреляции?

Коэффициент корреляции описывает, как одна переменная движется по отношению к другой. Положительная корреляция указывает на то, что оба движутся в одном направлении с корреляцией +1,0, когда они движутся в тандеме. Отрицательный коэффициент корреляции говорит о том, что они движутся в противоположных направлениях. Корреляция, равная нулю, предполагает отсутствие корреляции вообще.

Как рассчитать коэффициент корреляции?

Коэффициент корреляции рассчитывается путем сначала определения ковариации переменных, а затем деления этой величины на произведение стандартных отклонений этих переменных.

Как используется коэффициент корреляции при инвестировании?

Коэффициенты корреляции – широко используемый статистический показатель в инвестировании. Они играют очень важную роль в таких областях, как состав портфеля, количественная торговля и оценка эффективности. Например, некоторые управляющие портфелями будут отслеживать коэффициенты корреляции отдельных активов в своем портфеле, чтобы гарантировать, что общая волатильность их портфелей поддерживается в допустимых пределах. Аналогичным образом аналитики иногда используют коэффициенты корреляции, чтобы предсказать, как на конкретный актив повлияет изменение внешнего фактора, такого как цена товара или процентная ставка.

Источник

Ответы на тесты по эконометрике

Q=………..min соответствует методу наименьших квадратов

Автокорреляция — это корреляционная зависимость уровней ряда от предыдущих значений.

Автокорреляция имеется когда каждое следующее значение остатков

Аддитивная модель временного ряда имеет вид: Y=T+S+E

Атрибутивная переменная может употребляться, когда: независимая переменная качественна;

В каких пределах изменяется коэффициент детерминанта: от 0 до 1.

В каком случае модель считается адекватной Fрасч>Fтабл

В каком случае рекомендуется применять для моделирования показателей с увелич. ростом параболу если относительная величина…неограниченно

В результате автокорреляции имеем неэффективные оценки параметров

В хорошо подобранной модели остатки должны иметь нормальный закон

В эконометрическом анализе Xj рассматриваются как случайные величины

Величина доверительного интервала позволяет установить предположение о том, что: интервал содержит оценку параметра неизвестного.

Величина рассчитанная по формуле r=…является оценкой парного коэф. Корреляции

Внутренне нелинейная регрессия — это истинно нелинейная регрессия, которая не может быть приведена к линейной регрессии преобразованием переменных и введением новых переменных.

Временной ряд — это последовательность значений признака (результативного переменного), принимаемых в течение последовательных моментов времени или периодов.

Выберете авторегрессионную модель Уt=a+b0x1+Ɣyt-1+ƹt

Выберете модель с лагами Уt= a+b0x1…….(самая длинная формула)

Выборочное значение Rxy не > 1, |R|

Гомоскедастичность — постоянство дисперсии для всех наблюдений, или одинаковость дисперсии каждого отклонения (остатка) для всех значений факторных переменных.

Гомоскидастичность – это когда дисперсия остатков постоянна и одинакова для всех … наблюдений.

Дисперсия — показатель вариации.

Для определения параметров неиденцифицированной модели применяется.: не один из сущ. методов применить нельзя

Для определения параметров сверх иденцифицированной модели примен.: применяется. 2-х шаговый МНК

Для определения параметров структурную форму модели необходимо преобразовать в приведенную форму модели

Для определения параметров точно идентифицируемой модели: применяется косвенный МНК;

Для оценки … изменения y от x вводится: коэффициент эластичности:

Для парной регрессии ơ²b равно ….(xi-x¯)²)

Для проверки значимости отдельных параметров регрессии используется: t-тест.

Для регрессии y=a+bx из n наблюдений интервал доверия (1-а)% для коэф. b составит b±t…….·ơb

Для регрессии из n наблюдений и m независимых переменных существует такая связь между R² и F..=[(n-m-1)/m]( R²/(1- R²)]

Доверительная вероятность – это вероятность того, что истинное значение результативного показателя попадёт в расчётный прогнозный интервал.

Допустим что для описания одного экономического процесса пригодны 2 модели. Обе адекватны по f критерию фишера. какой предоставить преимущество, у той у кот.: большее значения F критерия

Допустим, что зависимость расходов от дохода описывается функцией y=a+bx среднее значение у=2…равняется 9

Если Rxy положителен, то с ростом x увеличивается y.

Если в уравнении регрессии имеется несущественная переменная, то она обнаруживает себя по низкому значению T статистки

Если качественный фактор имеет 3 градации, то необходимое число фиктивных переменных 2

Если коэффициент корреляции положителен, то в линейной модели с ростом х увеличивается у

Если мы заинтересованы в использовании атрибутивных переменных для отображения эффекта разных месяцев мы должны использовать 11 атрибутивных методов

Если регрессионная модель имеет показательную зависимость, то метод МНК применим после приведения к линейному виду.

Зависимость между коэффициентом множественной детерминации (D) и корреляции (R) описывается следующим методом R=√D

Значимость уравнения регрессии — действительное наличие исследуемой зависимости, а не просто случайное совпадение факторов, имитирующее зависимость, которая фактически не существует.

Интеркорреляция и связанная с ней мультиколлинеарность — это приближающаяся к полной линейной зависимости тесная связь между факторами.

Какая статистическая характеристика выражается формулой R²=…коэффициент детерминации

Какая статистическая хар-ка выражена формулой : rxy=Ca(x;y) разделить на корень Var(x)*Var(y): коэффициент. корреляции

Какая функция используется при моделировании моделей с постоянным ростом степенная

Какие точки исключаются из временного ряда процедурой сглаживания и в начале, и в конце.

Какое из уравнений регрессии является степенным y=a˳aͯ¹a

Классический метод к оцениванию параметров регрессии основан на: – метод наименьших квадратов (МНК)

Количество степеней свободы для t статистики при проверки значимости параметров регрессии из 35 наблюдений и 3 независимых переменных 31;

Количество степеней свободы знаменателя F-статистики в регрессии из 50 наблюдений и 4 независимых переменных: 45

Компоненты вектора Ei имеют нормальный закон

Корреляция — стохастическая зависимость, являющаяся обобщением строго детерминированной функциональной зависимости посредством включения вероятностной (случайной) компоненты.

Коэффициент автокорреляции: характеризует тесноту линейной связи текущего и предстоящего уровней ряда

Коэффициент детерминации — показатель тесноты стохастической связи в общем случае нелинейной регрессии

Коэффициент детерминации – это величина, которая характеризует связь между зависимыми и независимыми переменными.

Коэффициент детерминации – это квадрат множественного коэффициента корреляции

Коэффициент детерминации – это: величина, которая характеризует связь между независимой и зависимой (зависящей) переменными;

Коэффициент детерминации R показывает долю вариаций зависимой переменной y, объяснимую влиянием факторов, включаемых в модель.

Коэффициент детерминации изменяется в пределах: – от 0 до 1

Коэффициент доверия — это коэффициент, который связывает линейной зависимостью предельную и среднюю ошибки, выясняет смысл предельной ошибки, характеризующей точность оценки, и является аргументом распределения (чаще всего, интеграла вероятностей). Именно эта вероятность и есть степень надежности оценки.

Коэффициент доверия (нормированное отклонение) — результат деления отклонения от среднего на стандартное отклонение, содержательно характеризует степень надежности (уверенности) полученной оценки.

Коэффициент корелляции Rxy используется для определения полноты связи X и Y.

Коэффициент корелляции равный 0 означает, что: –отсутствует линейная связь.

Коэффициент корреляции используется для: определения тесноты связи между случайными величинами X и Y;

Коэффициент корреляции рассчитывается для измерения степени линейной взаимосвязи между двумя случайными переменными.

Коэффициент линейной корреляции — показатель тесноты стохастической связи между фактором и результатом в случае линейной регрессии.

Коэффициент регрессии — коэффициент при факторной переменной в модели линейной регрессии.

Коэффициент регрессии b показывает: на сколько единиц увеличивается y, если x увеличивается на 1.

Коэффициент эластичности измеряется в: неизмеримая величина.

Критерий Дарвина-Чотсона применяется для: – отбора факторов в модель; или – определения автокорреляции в остатках

Критерий Стьюдента — проверка значимости отдельных коэффициентов регрессии и значимости коэффициента корреляции.

Критерий Фишера показывает статистическую значимость модели в целом на основе совокупной достоверности всех ее коэффициентов;

Лаговые переменные это значение зависимых переменных за предшествующий период времени

Модель в целом статистически значима, если Fрасч > Fтабл.

Модель идентифицирована, если: – число параметров структурной модели равно числу параметров приведён. формы модели.

Модель неидентифицирована, если: – число приведён. коэф . больше числа структурных коэф.

Модель сверхидентифицирована, если: число приведён. коэф. меньше числа структурных коэф

Мультипликативная модель временного ряда имеет вид: – Y=T*S*E

Мультипликативная модель временного ряда строится, если: амплитуда сезонных колебаний возрастает или уменьшается

На основе поквартальных данных…значения 7-1 квартал, 9-2квартал и 11-3квартал …-5

Неправильный выбор функциональной формы или объясняющих переменных называется ошибками спецификации

Несмещённость оценки параметра регрессии, полученной по МНК, означает: – что она характеризуется наименьшей дисперсией.

Одной из проблем которая может возникнуть в многофакторной регрессии и никогда не бывает в парной регрессии, является корреляция между независимыми переменными

От чего зависит количество точек, исключаемых из временного ряда в результате сглаживания: от применяемого метода сглаживания.

Отметьте основные виды ошибок спецификации: отбрасывание значимой переменной; добавление незначимой переменной;

Оценки коэффициентов парной регрессии является несмещённым, если: математические ожидания остатков =0.

Оценки параметров парной линейной регрессии находятся по формуле b= Cov(x;y)/Var(x);a=y¯ ­bx¯

Оценки параметров регрессии являются несмещенными, если Математическое ожидание остатков равно 0

Оценки парной регрессии явл. эффективными, если: оценка обладают наименьшей дисперсией по сравнению с другими оценками

При наличии гетероскедастичности следует применять: – обобщённый МНК

При проверке значимости одновременно всех параметров регрессии используется: F-тест.

Применим ли метод наименьших квадратов для расчетов параметров показательной зависимости применим после ее приведения

Применим ли метод наименьших квадратов(МНК) для расчёта параметров нелинейных моделей? применим после её специального приведения к линейному виду

С помощью какого критерия оценивается значимость коэффициента регрессии T стьюдента

С увеличением числа объясняющих переменных скоррестированный коэффициент детерминации: – увеличивается.

Связь между индексом множественной детерминации R² и скорректированным индексом множественной детерминации Ȓ² есть

Скорректиров. коэф. детерминации: – больше обычного коэф. детерминации

Стандартизованный коэффициент уравнения регрессии Ƀk показывает на сколько % изменится результирующий показатель у при изменении хi на 1%при неизмененном среднем уровне других факторов

Стандартный коэффициент уравнения регрессии: показывает на сколько 1 изменится y при изменении фактора xk на 1 при сохранении др.

Суть коэф. детерминации r 2 xy состоит в следующем: – характеризует долю дисперсии результативного признака y объясняем. регресс., в общей дисперсии результативного признака.

Табличные значения Фишера (F) зависят от доверительной вероятности и от числа включённых факторов и от длины исходного ряда (от доверительной вероятности p и числа степеней свободы дисперсий f1 и f2)..

Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, идентифицируемо если D+1=H

Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, НЕидентифицируемо если D+1 H

Уравнение идентифицировано, если: – D+1=H

Уравнение неидентифицировано, если: – D+1 H

Фиктивные переменные – это: атрибутивные признаки (например, как профессия, пол, образование), которым придали цифровые метки;

Формула t= rxy….используется для проверки существенности коэффициента корреляции

Частный F-критерий: – оценивает значимость уравнения регрессии в целом

Число степеней свободы для факторной суммы квадратов в линейной модели множественной регрессии равно: m;

Что показывает коэффициент наклона – на сколько единиц изменится у, если х изменился на единицу,

Что показывает коэффициент. абсолютного роста на сколько единиц изменится у, если х изменился на единицу

Экзогенная переменная – это независимая переменная или фактор-Х.

Экзогенные переменные — это переменные, которые определяются вне системы и являются независимыми

Экзогенные переменные – это предопределенные переменные, влияющие на зависимые переменные (Эндогенные переменные), но не зависящие от них, обозначаются через х

Эластичность измеряется единица измерения фактора…показателя

Эндогенные переменные – это: зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через у

Определения

T-отношение (t-критерий) — отношение оценки коэффициента, полученной с помощью МНК, к величине стандартной ошибки оцениваемой величины.

Аддитивная модель временного ряда – это модель, в которой временной ряд представлен как сумма перечисленных компонент.

Критерий Фишера — способ статистической проверки значимости уравнения регрессии, при котором расчетное (фактическое) значение F-отношения сравнивается с его критическим (теоретическим) значением.

Линейная регрессия — это связь (регрессия), которая представлена уравнением прямой линии и выражает простейшую линейную зависимость.

Метод инструментальных переменных — это разновидность МНК. Используется для оценки параметров моделей, описываемых несколькими уравнениями. Главное свойство — частичная замена непригодной объясняющей переменной на такую переменную, которая некоррелированна со случайным членом. Эта замещающая переменная называется инструментальной и приводит к получению состоятельных оценок параметров.

Метод наименьших квадратов (МНК) — способ приближенного нахождения (оценивания) неизвестных коэффициентов (параметров) регрессии. Этот метод основан на требовании минимизации суммы квадратов отклонений значений результата, рассчитанных по уравнению регрессии, и истинных (наблюденных) значений результата.

Множественная линейная регрессия — это множественная регрессия, представляющая линейную связь по каждому фактору.

Множественная регрессия — регрессия с двумя и более факторными переменными.

Модель идентифицируемая — модель, в которой все структурные коэффициенты однозначно определяются по коэффициентам приведенной формы модели.

Модель рекурсивных уравнений — модель, которая содержит зависимые переменные (результативные) одних уравнений в роли фактора, оказываясь в правой части других уравнений.

Мультипликативная модель – модель, в которой временной ряд представлен как произведение перечисленных компонент.

Несмещенная оценка — оценка, среднее которой равно самой оцениваемой величине.

Нулевая гипотеза — предположение о том, что результат не зависит от фактора (коэффициент регрессии равен нулю).

Обобщенный метод наименьших квадратов (ОМНК) — метод, который не требует постоянства дисперсии (гомоскедастичности) остатков, но предполагает пропорциональность остатков общему множителю (дисперсии). Таким образом, это взвешенный МНК.

Объясненная дисперсия — показатель вариации результата, обусловленной регрессией.

Объясняемая (результативная) переменная — переменная, которая статистически зависит от факторной переменной, или объясняющей (регрессора).

Остаточная дисперсия — необъясненная дисперсия, которая показывает вариацию результата под влиянием всех прочих факторов, неучтенных регрессией.

Предопределенные переменные — это экзогенные переменные системы и лаговые эндогенные переменные системы.

Приведенная форма системы — форма, которая, в отличие от структурной, уже содержит одни только линейно зависящие от экзогенных переменных эндогенные переменные. Внешне ничем не отличается от системы независимых уравнений.

Расчетное значение F-отношения — значение, которое получают делением объясненной дисперсии на 1 степень свободы на остаточную дисперсию на 1 степень свободы.

Регрессия (зависимость) — это усредненная (сглаженная), т.е. свободная от случайных мелкомасштабных колебаний (флуктуаций), квазидетерминированная связь между объясняемой переменной (переменными) и объясняющей переменной (переменными). Эта связь выражается формулами, которые характеризуют функциональную зависимость и не содержат явно стохастических (случайных) переменных, которые свое влияние теперь оказывают как результирующее воздействие, принимающее вид чисто функциональной зависимости.

Регрессор (объясняющая переменная, факторная переменная) — это независимая переменная, статистически связанная с результирующей переменной. Характер этой связи и влияние изменения (вариации) регрессора на результат исследуются в эконометрике.

Система взаимосвязанных уравнений — это система одновременных или взаимозависимых уравнений. В ней одни и те же переменные выступают одновременно как зависимые в одних уравнениях и в то же время независимые в других. Это структурная форма системы уравнений. К ней неприменим МНК.

Система внешне не связанных между собой уравнений — система, которая характеризуется наличием одних только корреляций между остатками (ошибками) в разных уравнениях системы.

Случайный остаток (отклонение) — это чисто случайный процесс в виде мелкомасштабных колебаний, не содержащий уже детерминированной компоненты, которая имеется в регрессии.

Состоятельные оценки — оценки, которые позволяют эффективно применять доверительные интервалы, когда вероятность получения оценки на заданном расстоянии от истинного значения параметра становится близка к 1, а точность самих оценок увеличивается с ростом объема выборки.

Спецификация модели — определение существенных факторов и выявление мультиколлинеарности.

Стандартная ошибка — среднеквадратичное (стандартное) отклонение. Оно связано со средней ошибкой и коэффициентом доверия.

Степени свободы — это величины, характеризующие число независимых параметров и необходимые для нахождения по таблицам распределений их критических значений.

Тренд — основная тенденция развития, плавная устойчивая закономерность изменения уровней ряда.

Уровень значимости — величина, показывающая, какова вероятность ошибочного вывода при проверке статистической гипотезы по статистическому критерию.

Фиктивные переменные — это переменные, которые отражают сезонные компоненты ряда для какого-либо одного периода.

Эконометрическая модель — это уравнение или система уравнений, особым образом представляющие зависимость (зависимости) между результатом и факторами. В основе эконометрической модели лежит разбиение сложной и малопонятной зависимости между результатом и факторами на сумму двух следующих компонентов: регрессию (регрессионная компонента) и случайный (флуктуационный) остаток. Другой класс эконометрических моделей образует временные ряды.

Эффективность оценки — это свойство оценки обладать наименьшей дисперсией из всех возможных.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *