когда говорят что процессор 32х битный это означает что процессор

32- или 64-разрядный процессор: в чем разница и что лучше для обычного пользователя ПК?

32- или 64-разрядный процессор компьютера – что лучше? Сегодня пользователи этим вопросом не заморачиваются по той простой причине, что все современные сборки ПК, как правило, комплектуются 64-разрядными процессорами. Но еще каких-то 5-6 лет назад споры о том, какой же процессор лучше — 32- или 64-разрядный – были популярнейшей темой различных компьютерных форумов в Интернете.

Что такое разрядность процессора, в чем заключается отличие 32- от 64-разрядного процессора, и как это в конечном счете влияет на работу и производительность ПК с позиции обычного пользователя? В этом всем попытаемся разобраться ниже.

0. Оглавление

1. Как узнать разрядность установленного на ПК процессора?

Чтобы узнать разрядность установленного на ПК процессора, лучше всего установить специальную программу, функционал которой предусматривает отображение детальной информации об аппаратных составляющих ПК. Например, программы CPU-Z или Speccy – их можно скачать c официальных сайтов совершенно бесплатно.

Запустите одну из этих программ, подождите, пока те просканируют систему и отобразят аппаратные характеристики ПК. Зайдите в раздел меню, в котором содержатся данные о центральном процессоре ПК – вкладки «CPU» в программе CPU-Z или «Центральный процессор» в Speccy.

Разрядность процессора отображается в графе «Инструкции», где выводятся данные о поддержке инструкций. Если процессор 64-разрядный, то в этой графе должно присутствовать об этом указание.

когда говорят что процессор 32х битный это означает что процессор. Смотреть фото когда говорят что процессор 32х битный это означает что процессор. Смотреть картинку когда говорят что процессор 32х битный это означает что процессор. Картинка про когда говорят что процессор 32х битный это означает что процессор. Фото когда говорят что процессор 32х битный это означает что процессор

В программе «CPU» в зависимости от производителя процессора это либо «EM64T» (Intel 64), либо «x86-64» (AMD 64).

когда говорят что процессор 32х битный это означает что процессор. Смотреть фото когда говорят что процессор 32х битный это означает что процессор. Смотреть картинку когда говорят что процессор 32х битный это означает что процессор. Картинка про когда говорят что процессор 32х битный это означает что процессор. Фото когда говорят что процессор 32х битный это означает что процессор

В программе Speccy все чуть проще – графа инструкции отображает либо «AMD 64», либо «Intel 64».

Если раздел «Инструкции» в обеих программах не отображает таких данных, это значит на ПК установлен 32-разрядный процессор.

Но встретить 32-разрядный процессор сегодня не так-то и просто, это должна быть очень старая сборка ПК, ведь начиная с первого 64-разрядного процессора AMD Athlon 64, представленного в 2003 году, и поздних моделей Pentium 4 от Intel, на рынок компьютерной техники производители поставляют только 64-разрядные процессоры.

2. Разрядность: что включает в себя этот термин?

Как видим, определить разрядность процессора, установленного на ПК очень просто, но что же включает в себя сам термин разрядность? Разрядность процессора это – число разрядов (их еще называют битами), которые процессор способен обработать за один раз.

Рост разрядности процессоров был обусловлен развитием компьютерных технологий.

В 1971 году компанией Intel был создан первый 4-разрядный процессор 4004. Чуть позднее появился 8-разрядный 8080, затем 16-разрядный 8086. Первый 32-разрядный процессор 80386 компания Intel создала в 1985 году, и он в дальнейшем стал базой для всех сегодняшних моделей компьютерных процессоров. А вот первенство в создании 64-разрядного процессора принадлежит компании AMD – в 2003 году она создала Athlon 64.

Термин разрядность применяется не только к процессорам, но также и к шинам. К примеру, технические характеристики видеокарт часто содержат указание разрядности шины памяти. Что касается определения термина разрядности шины, то здесь будет виднеться та же суть, что и у термина разрядности процессора. Так, разрядность шины это не что иное, как число бит, одновременно обрабатываемое шиной.

3. Каковы преимущества 64-разрядных процессоров для обычных пользователей ПК?

Для обычных пользователей, использующих ПК сугубо для своих личных нужд в рамках досуга, преимущество 64-разрядных процессоров заключается в возможности задействовать больше 4 Гб оперативной памяти. 64-разрядный процессор позволяет использовать 8, 16, 32 и даже более Гб оперативной памяти в работе ПК. Такая производительность необходима тем, кто использует ПК, загружая его многозадачностью, работая со сложными графическими программами или профессиональными видеоредакторами. И, конечно же, геймеры – для многих новинок игромира, для некоторых мощных видеоигр, начиная с 2011 года, может потребоваться как минимум 8 Гб оперативной памяти, чтобы играть на максимальном качестве игры.

Для использования такого преимущества 64-разрядного процессора, на ПК должна быть установлена 64-разрядная операционная система, специфика которой сможет раскрыть весь мощностной потенциал ПК. А вот если на ПК с 64-разрядным процессором и, к примеру, с 8 Гб оперативной памяти установить 32-разрядную операционную систему, придется довольствоваться ограничениями – оперативная память будет доступна только в объеме 4 Гб. И весь мощностной потенциал «железа» ПК останется нераскрытым.

Определить, на ПК установлена 32- или 64-разрядная Windows, можно, вызвав левой клавишей мышки контекстное меню на иконке «Мой компьютер» (или «Этот компьютер» в Windows 8 и 8.1). В меню выбираем «Свойства». Откроются основные системные характеристики, где в графе «Тип системы» и будет указана, какая Windows установлена — 32- или 64-разрядная.

когда говорят что процессор 32х битный это означает что процессор. Смотреть фото когда говорят что процессор 32х битный это означает что процессор. Смотреть картинку когда говорят что процессор 32х битный это означает что процессор. Картинка про когда говорят что процессор 32х битный это означает что процессор. Фото когда говорят что процессор 32х битный это означает что процессор

Это же можно определить, не выходя из программы Speccy – в разделе «Операционная система».

когда говорят что процессор 32х битный это означает что процессор. Смотреть фото когда говорят что процессор 32х битный это означает что процессор. Смотреть картинку когда говорят что процессор 32х битный это означает что процессор. Картинка про когда говорят что процессор 32х битный это означает что процессор. Фото когда говорят что процессор 32х битный это означает что процессор

32- и 64-разрядная Windows практически не отличаются ни установкой, ни настройкой, ни использованием. Скачать загрузочный образ Windows в Интернете или купить физический загрузочный диск можно очень легко и с одной, и с другой разрядностью операционной системы.

Смотрите также:

В данной статье будет подробно, в деталях, рассказано как создать нового пользователя в Microsoft SQL Server 2012 (в более старых редакциях, например в Microsoft SQL Server 2008 R2, набор действий…

Здесь будет рассказано как добавить нового пользователя для работы в системе 1С:Предприятие 7.7. 0. Оглавление Добавление пользователя в конфигураторе Настройки значений по умолчанию (только для конфигурации «Торговля и…

Источник

Что значит 32 разрядная система и процессор x64?

Просматривая свойства компьютера в операционной системе Windows, некоторые пользователи могут обратить внимание на раздел “Тип системы”. В нем указывается разрядность установленной Windows, а также разрядность центрального процессора, установленного в системном блоке.

Ниже мы расскажем вам что означают указанные в типе системы данные.

Что показывает разрядность (x86, 32 и 64 бит)?

Разрядность процессора показывает какой объем данных, измеряемый в битах, может обработать регистр процессора за единицу времени, равной одному рабочему такту.

Таким образом, чем выше разрядность процессора и чем выше его тактовая частота – тем больший объем данных он может обработать и тем выше его общая производительность.

Но для того, чтобы процессор работал в 64 битном режиме, нужно чтобы операционная система была 64 битной, а также приложение, запускаемое в ней.

Стоит отметить, что 32 битные (x86) приложения также работают в 64 битных системах и на 64 битных процессорах. А вот в обратную сторону совместимость отсутствует. То есть запустить 64 битную программу в 32 битной Windows и/или на 32 битном процессоре невозможно.

В принципе, начиная с 2003 года, все процессоры Intel и AMD начали поддерживать 64 битную архитектуру.

Не стоит забывать про очень важный недостаток 32 битной архитектуры – она позволяет работать не более чем с 3.2 гигабайтами оперативной памяти.

Что показывает тип системы в свойствах компьютера?

Фраза “32 разрядная система процессор x64” говорит о том, что на вашем компьютере установлен процессор с поддержкой 64 битной архитектуры, а вот windows установлен 32 битный.

Если у вас установлено 3 ГБ оперативной памяти и меньше, то 32 разрядная система лучше подходит, чем 64, так как она использует для своей работы меньший объем памяти.

когда говорят что процессор 32х битный это означает что процессор. Смотреть фото когда говорят что процессор 32х битный это означает что процессор. Смотреть картинку когда говорят что процессор 32х битный это означает что процессор. Картинка про когда говорят что процессор 32х битный это означает что процессор. Фото когда говорят что процессор 32х битный это означает что процессор

64 битная система и процессор

Если же объем установленной ОЗУ от 4 ГБ и выше, то обязательно нужно переустановить систему на 64 битную, чтобы в типе системы было указано “64 разрядная система процессор x64”, так как это позволит использовать всю память и соответственно увеличит производительность.

Источник

Чем отличаются 32-х битные и 64-х битные системы?

Покупая компьютер, Вы сталкиваетесь с тем, что Вам всегда необходимо делать выбор что купить, ноутбук, компьютер или нетбук, какую фирму-производитель выбрать и т.д. После всех принятых решений, Вам еще предстоит определиться, какую версию операционной системы поставить: 32 бит или 64 бит.

Сначала мы приведем описания 32-х и 64-х битных процессоров, чтобы разобраться, что это за зверь такой, х-битный процессор. Дело в том, что количество бит указывает на ширину регистра процессора и обозначает способ обработки информации процессором компьютера. Такой регистр представляет собой небольшое хранилище, которое используется процессором для хранения данных, к которым для оптимальной производительности компьютера ему необходимо иметь быстрый доступ. Число бит указывает на ширину данного регистра. В связи с этим 64-х битный регистр может хранить в себе больше данных, чем 32-х битный, который, в свою очередь, хранит больше данных, чем 16-ти битный или 8-ми битные регистры.

32-х битная архитектура Windows не позволяет выделять приложению более 2GB памяти. Однако, для современных игр, приложений фото- и видеоредакторов, а также виртуальных машин и т.д. требуется больший объем памяти. 64-х битные системы позволяют напрямую адресовать более 4 GB оперативной памяти, а это более чем достаточно для продуктивной работы даже самых «больших» приложений.

Интересно, что еще за 5 лет до появления компьютерных 64-х битных процессоров, консоли «Nintendo 64» и «Playstation 2» имели 64-х битные процессоры пользовательского уровня.

Основная разница между 32 и 64 битами заключается в увеличенной памяти.

Другое преимущество 64-бит Windows 7 это дополнительная защита «DEP» на уровне жесткого диска, а не программного обеспечения, как у пользователей 32 бит.

Кроме того, существует проблема совместимости драйверов. Этот недостаток является очень серьезным. К счастью, производители оборудования продолжают увеличивать поддержку 64-х битных операционных систем (если Ваше оборудование выпущено в последние год-два, то проблем у Вас будет не много). Но поиск драйверов для старых устройств может оказаться неразрешимой задачей, например для старого сканнера или принтера. В таком случае придется покупать новые устройства.Некоторые программы плохо «переживают» переход на 64 бита. В отличие от предыдущих версий Windows, Windows 7 х64 не поддерживает 16-ти битные приложения.

Кроме того, следует понимать, что если даже приложение является 64х битным, плагины и расширения для него могут таковыми не являться. Такие проблемы часто возникают с «Photoshop» и «Firefox». Основное приложение доступно в 64-х битном варианте, но важные плагины – нет.

Материнские платы, поддерживающие ранние 64-х битные процессоры и не поддерживающие более 4GB оперативной памяти являются редкостью. Однако, если это Ваш случай, то с переходом на 64-х битную операционную систему Вы не получите самого главного – доступа к большей памяти.

Выводы:
1) Windows7 64-разрядная система может обрабатывать больше объемы оперативной памяти (RAM) и эффективнее, чем 32-разрядная система.

2) Windows7 64-бит имеет дополнительную защиту «DEP» на уровне жесткого диска, которой нет на Windows7 32-бит.

3) Windows7 32-бит можно установить на процессоры 32-бит и 64-бит, но для установки Windows7 64-бит требуется процессор 64-бит.

4) Windows7 32-разрядная система может поддерживать 16-битные программы, в то время как Windows7 64-разрядная система не может.

Дополнительная информация:
Как определить, какая система установлена на вашем компьютере?

Вы можете посмотреть на версию установленной у Вас Windows – возможно, Вы уже используете 64-х битную операционную систему. Для этого в Windows Vista и Windows 7 кликните по Компьютеру (Computer) из меню Пуск (Start) правой кнопкой мыши и в контекстном меню выберите пункт Свойства (Properties). Вы попадете в меню системных свойств, где в разделе Система (System) Вы увидите, какая у Вас операционная система – 32-х битная или же 64-х битная.

Под Windows XP Вы можете протестировать свой процессор и узнать, можете ли Вы проапгредиться на 64-х битную Windows с помощью бесплатной программы SecurAble от Стива Гибсона (Steve Gibson). Данная утилита проверяет процессор по трем различным параметрам.

Во-первых, она проверяет, является ли процессор 64-х битным. Во-вторых, она проверяет поддержку им «DEP» (технологии безопасности, разработанной для защиты машин от атак переполнения буфера). И, наконец, в-третьих, программа проверяет наличие поддержки виртуальной машины XP под Windows 7.

Источник

О разрядности процессоров

Целью данной статьи является попытка посеять сомнение в голове читателя, уверенного, что он знает о разрядности всё или почти всё. Но сомнение должно быть конструктивным, дабы сподвигнуть на собственное исследование и улучшить понимание.

Термин «разрядность» часто используют при описании вычислительных устройств и систем, понимая под этим число бит, одновременно хранимых, обрабатываемых или передаваемых в другое устройство. Но именно применительно к центральным процессорам (ЦП), как к наиболее сложным представителям вычислительного железа, не делимым на отдельные детали (до тех пор, пока кто-то не придумал, как продать отдельно кэш или умножитель внутри чипа), понятие разрядности оказывается весьма расплывчатым. Продемонстрировать это поможет умозрительный пример.

Представьте себе, что вокруг благодатные 80-е, в мире (всё ещё) десятки производителей ЦП, и вы работаете в одном из них над очередным поколением. Никаких 256-битных SSE8, встроенных GPU и 5-канальных контроллёров памяти на свете пока нет, но у вас уже есть готовый 16-битный процессор (точнее, «16-битный» пишется в технической документации), в котором 16 бит везде и во всём — от всех внешних шин до архитектурного размера обрабатываемых данных. Реальным примером такого ЦП могут быть первые однокорпусные (правда, не однокристальные) ЦП для архитектуры DEC PDP-11. И вот приходит задание руководства — разработать новое, обратно совместимое поколение этого же ЦП, которое будет 32-битным — не уточняя, что понимается под последним. Именно это понимание и предстоит прояснить в первую очередь. Итак, наш главный вопрос: что именно надо удвоить по разрядности в нашем пока насквозь 16-битном ЦП, чтобы получившийся процессор мог называться 32-битным? Чтобы решать задачу было легче, применим два подхода: систематизируем определения и посмотрим на примеры.Систематизируем

Первое, что приходит в голову — разрядность чего именно считать? Обратимся к определению любой информационной системы: её три основных функции — это обработка, хранение и ввод-вывод данных, за которые отвечают, соответственно, процессор(ы), память и периферия. Учитывая, что сложная иерархически самоподобная система состоит из многих компонент, можно утверждать, что такое разделение функций сохраняется и на компонентном уровне. Например, тот же процессор в основном обрабатывает данные, но он также обязан их хранить (для чего у него есть относительно небольшая память) и обмениваться с другими компонентами (для этого есть разные шины и их контроллёры). Поэтому будем функционально разделять разрядности обработки, хранения и обмена информации.

Рискну предположить, что все производители любого программируемого «железа», особенно процессоров, на 90% стараются не для конечных пользователей, а для программистов. Следовательно, с точки зрения производителей процессор должен выполнять нужные команды нужным образом. С другой стороны, детали структуры кристалла (топологические, электрические и физические параметры отдельных транзисторов, вентилей, логических элементов и блоков) могут быть скрыты не только от пользователя, но и от программиста. Выходит, что разрядность надо отличать и по реализации — физическую и архитектурную.

Следует добавить, что программисты тоже бывают разные: большинство пишут прикладные программы на языках высокого уровня с помощью компиляторов (что делает код до некоторой степени платформонезависимым), некоторые пишут драйверы и компоненты ОС (что заставляет более внимательно относиться к учёту реальных возможностей аппаратной части), есть творцы на ассемблере (явно требующем знания целевого процессора), а кто-то пишет сами компиляторы и ассемблеры (аналогично). Поэтому под программистами далее будем понимать именно тех, для кого детали аппаратной реализации важны если не для написания программы вообще, то хотя бы для её оптимизации по скорости — «архитектурная» разрядность чего-либо будет относиться именно к программированию на родном машинном языке процессора или более удобном ассемблере, не залезая при этом в нутро ЦП (это уже вопросы микроархитектуры, которую мы для большего различия и назвали физической реализацией). Описанные нюансы всё равно влияют на всех программистов, т.к. языки высокого уровня почти всегда переводятся компиляторами в машинный код, а компиляторы тоже должен кто-то написать. Исключения в виде интерпретируемых языков тоже не стоят в стороне — сами интерпретаторы тоже создаются с помощью компиляторов.

Осталось рассмотреть, разрядность какой именно информации нам интересна. Что вообще потребляет и генерирует ЦП в информационном смысле? Команды, данные, адреса и сигнально-управляющие коды. О последних речь не идёт — их разрядность жёстко зафиксирована в конкретной аппаратной реализации и в большинстве случаев программно не управляема. Чуть трудней с командами — в семействе архитектур RISC, например, разрядность любого обращения к памяти должна быть равна физической разрядности шины данных процессора, в т.ч. и при считывании кода (кроме некоторых послаблений в современных ARM и PowerPC). Это хорошо для ЦП — нет проблем с невыровненным доступом, все команды имеют одинаковую, либо переменную, но просто вычисляемую длину. Зато плохо для программиста — RISC это усечённый набор команд, которые ещё и занимают больше места, чем при более компактном кодировании (для того же алгоритма нужно больше команд, но и для того же числа команд надо больше байтов). Поэтому именно CISC-парадигма завоевала наибольший подход с её разнообразием и переменной длинной команд, не равной разрядности чего-либо. Разумеется, все современные ЦП внутри — настоящие RISC, но это только физически, а не архитектурно. Остались только два вида информации — данные и адреса. Их и рассмотрим.Собираем

У нас имеется три критерия видов разрядности: функциональный (обработки, хранения и обмена), реализационный (физическая и архитектурная) и типовой (данных и адресов). Итого уже 12 видов этой непонятной штуки. Предположим, что на каждую комбинацию критериев для нашего исходного ЦП мы отвечаем «16-битная» (и физическая разрядность обработки данных, и архитектурная хранения адресов, и все остальные). Теперь посмотрим, какие из этих вопросов обязательно должны давать ответ «32-битная», чтобы получившийся процессор оказался именно таким.

Начнём с архитектурной части. Должен ли ЦП хранить данные и адреса в логическом 32-битном формате, чтобы называться 32-битным? Насчёт данных, очевидно, да, а вот по поводу адресов всё не так просто. Почти все 8-битные (по данным) ЦП имеют возможность хранить 16-битные адреса в парах регистров (иначе им не видать распространённой на этих платформах 16-битной адресации), но от этого их не называют 16-битными. Может быть, если ЦП сможет хранить 32-битные данные, но всего-то 16-битные адреса, его уже можно называть 32-битным.

На аналогичные вопросы об архитектурных вычислениях над 32-битными данными и адресами, а также программно 32-битном обмене данных с программно 32-битной адресацией ответ может быть таким же — с данными надо, а с адресами не факт.

Перейдём на физическую реализацию. Должен ли ЦП хранить данные и адреса в физически 32-битном формате? Оказывается, не обязательно, т.к. для 32-битных операндов можно спарить регистры, чем успешно пользовались ещё 8-битные ЦП, начиная с i8080. А зилоговские 16-битные Z8000 могли даже счетверять регистры, получая 64-битный аргумент (только для данных). Это не так эффективно, т.к. полный объём данных, умещающийся в регистровом файле, не увеличится, но это и не требовалось. Зато всегда есть возможность обратиться и к старшей, и к младшей половине виртуального 32-битного регистра — камень в огороды архитектур IA-32 и MC68k, где можно обращаться только к младшей половине (в IA-32 — ещё и с префиксом, что замедляет выполнение).

Идём далее. Должен ли ЦП обрабатывать данные и адреса 32-битными физическими порциями? Оказывается, и это не требуется, операнды можно обрабатывать половинками в функциональных устройствах 16-битного размера. Стоит вспомнить процессор Motorola MC68000, применявшийся в первых Макинтошах, Амигах, Атари и других популярных машинах — он считался 32-битным, в нём есть 32-битные регистры, но нет ни одного 32-битного ФУ (оно появилось только в 68020). Зато есть целых три 16-битных АЛУ, два из которых умеют спариваться при выполнении 32-битной операции. У i8080 и Z80 8-битные АЛУ выполняли 16-битные операции для вычисления адреса последовательно над его байтами. Позже эта история повторилась с набором SSE и его 128-битными операндами, которые поначалу обрабатывались на 64-битных ФУ.

Наконец, обмен: нужно ли процессору физически принимать и передавать данные 32-битными порциями с 32-битной адресацией? На первый вопрос дали ответ почти все производители ЦП, выпустив чипы с половинной шириной шины: 8 бит для 16-битного i8088, 16 бит для 32-битных MC68000/010 и i80386SX/EX/CX, и даже 8 бит для 32-битного MC68008. С физической разрядностью шины адреса куда веселее. Начнём с того, что для многобайтовых шин данных (т.е. начиная с 16-битной) физическая адресация памяти может происходить по словам или по байтам. В первом случае на шину адреса всегда подаётся адрес слова, а шина данных считывает или записывает нужную его часть — от отдельного байта до слова целиком. Для обозначения разрядности доступа может применяться отдельная шина байт-маски (в архитектуре x86 такой приём начал применяться со времён i386 — по биту на каждый байт шины данных), либо комбинация управляющих сигналов с младшими битами шины адреса, которые в этом режиме не нужны (для 32-биной шины данных адрес слова нацело делится на 4, а потому младшие 2 бита шины адреса всегда равны нулю) — так было до выхода i386. Случай же адресации байтов возможен лишь при динамической подстройке ширины шины и из широко известных ЦП применялся только в MC68020/030. В результате к сегодняшнему дню используется именно адресация слов вместе с байт-маской, поэтому физическая разрядность шины адреса оказывается меньше её логической ширины на число бит, на единицу меньшее разрядности шины данных в байтах. Из чего следует, что 32-битная физическая шина адреса может быть только при 8-битной шине данных, на что ни один архитектор и инженер в здравом уме не пойдёт по очевидным соображениям.

Но это ещё не всё. Зачем нам вообще 32-битная физическая или логическая адресация? Середина-конец 80-х, на рынке только-только появились мегабитные микросхемы памяти, типичный объём памяти для ПК пока что измеряется сотнями килобайт, но чуть позже — мегабайтами. А 32-битная адресация позволит получить доступ к 4 ГБ физического ОЗУ! Да кому вообще такое может понадобиться в ближайшие лет 20 в персоналках?! Неудивительно, что первые популярные «32-битные» ЦП имели совсем не 32 бита логической ширины шины адреса: MC68000 имел 24 (23 физических + 1 для управления разрядами), а MC68008 — и вовсе 20. Intel 386SX (вышедший на 3 года позже оригинального полностью 32-битного i80386), помимо уполовинивания шины данных, сократил и шину адреса до 24 (23 физических) бит, а его встраиваемые версии 386EX/CX имели 26-битную шину. Более того, первые чипсеты, позволявшие оперировать 32-битными адресами, появились лишь в 90-х, а первые материнские платы, имевшие достаточное число слотов памяти, чтобы набрать >4 ГБ модулями максимального на тот момент размера — лишь в 2000-х. Хотя первые ЦП с 64-битной физической шиной адреса (IBM/Motorola PowerPC 620) появились аж в 1994 г.. Выводим

Итак, физически в процессоре вообще ничего не требуется делать 32-битным. Достаточно лишь архитектурно убедить программиста, что ЦП выполняет 32-битные операции одной командой. И хотя она при отсутствии полноценных внутренних ресурсов неизбежно будет декодироваться в цепочки микрокода для управления 16-битными физическими порциями информации и аппаратными блоками — это уже программиста не волнует. Так что же, достаточно переписать прошивку, переделать декодер и схему управления, и вот наш 16-битный процессор сразу стал 32-битным?

Как известно, любую хорошую идею можно довести до абсурда, и тогда она сама себя дискредитирует. Увеличение разрядности ЦП — не исключение. На этом месте архитектурщик сразу должен задаться вопросом — а зачем всё это? Увеличивать разрядность данных хорошо для ускорения работы с ними (часто требуется обрабатывать значения, не умещающиеся в 16 бит), а адресов — для получения возможности оперировать большими объёмами данных (ограничение в 64 КБ для 16-битной адресации, кое-как ослабленное сегментной моделью IA-16, сковывало программистов уже в середине 80-х). Можно, конечно, сделать страничную адресацию с программно переключаемыми банками (могли же 8-битные ЦП адресовать 1 МБ на популярных дешёвых ПК и игровых приставках), но ценой усложнения программ и замедления доступа к памяти. Аналогично — разве имеет смысл делать 32-битность для данных такой, что она почти не ускоряет производительность по сравнению с обработкой 32-битных чисел на 16-битной платформе под управлением программы, а не микрокода? Таким образом мы только упростим программирование, сэкономив на числе команд, но не получим скачок в скорости. Из чего мы приходим к выводу — увеличение разрядности должно реализовываться так, чтобы оно реально привело к качественному (больше памяти) и количественному (быстрее операции) скачку возможностей архитектуры. «Больше памяти» здесь относится именно к качественному развитию, т.к. многие алгоритмы и приложения вообще откажутся работать при недостатке ОЗУ, в то время как даже медленный процессор всё равно рано или поздно программу выполнит. Виртуальная память с дисковой подкачкой бессмысленна при менее чем 32-битной реализации.

Но означает ли всё это, что в ЦП как можно больше ресурсов, и аппаратных, и архитектурных, должны быть 32-битными, чтобы его можно было бы назвать полноценным 32-битным процессором? Совсем нет. Возьмём тот же MC68000 — у него 32-битная архитектура для данных и адресов и 32-битные регистры, но 16-битные АЛУ и внешняя шина данных и 24-битная физическая внешняя адресация. Тем не менее, недостаточная «32-битность» не мешает ему обгонять появившийся на 3 года позже «16-битный» 80286: на популярном в 1980-е бенчмарке Dhrystones MC68000 на 8 МГц набирает 2100 «попугаев», а 286 на 10 МГц — 1900 (также 16-битный i8088 на 4,77 МГц — 300).

Но всё это нам не поможет ответить на вопрос — что же такое разрядность процессора? В момент, когда мы уже было пришли к некоему заключению, на сцене появляется новый герой — тип данных. Всё вышеизложенное имело отношение лишь к целочисленным вычислениям и их аргументам. Но ведь есть ещё и вещественные. Кроме того, пока что мы оперируем скалярными величинами, но есть ещё и векторные. А ведь, по слухам, Intel намерена встроить вещественный сопроцессор прямо внутрь своего нового 80486 (напомню: на дворе у нас, условно — 80-е годы). С учётом того, что внутреннее физическое и архитектурное представление данных (с адресами FPU не работает) 80-битное — как же тогда называть «четвёрку» — «32/80-битным» процессором? Вернёмся обратно в настоящее — как называть Pentium MMX, который откусил 64 бита от каждого 80-битного скалярного вещественного регистра и назвал их целочисленным векторным регистром? А Pentum Pro/II с 256-битной шиной данных между кэшем L2 и ядром? (Ещё ранее MIPS R4000 и его варианты имели внутренний контроллёр L2 с внешней 128-битной шиной до самого кэша.) А как назвать Pentium III с его 128-битными регистрами XMM, хотя в каждом таком векторе могут пока храниться лишь 32-битные компоненты, а обрабатываться лишь парами в 64-битных ФУ, но не четвёрками? А как воспринимать готовящиеся сейчас для новых архитектур (в частности, Intel Larrabee) команды векторной адресации типа Scatter и Gather, где части векторного регистра воспринимаются как адреса, а не данные, и потому адресация тоже может считаться ххх-битной?

Современный спор о переходе с 32-битной на 64-битную платформу повторяет эту историю с дополнениями, ещё более подсаливающими и так разнообразное по вкусу блюдо. Прежде всего, если посмотреть на темпы удвоения разрядности (что бы под ней не понимали) однокристальных ЦП, то окажется, что переход от первых 4-битных к первым 32-битным произошёл всего за 8 лет — c 1971 г. (i4004) по 1979 г. (MC68000 и куда менее известный NS32016). Следующее удвоение до 64 бит потребовало 10 лет — i860 имел 32-битное целое скалярное АЛУ и 32-битные универсальные регистры со спариванием, но 64-битные FPU и целочисленное векторное ФУ, 64-битные внешние шины и, впервые, внутреннюю 128-битную шину ядро-кэш. А пока 64 бита добрались до ПК — прошло ещё лет 15, хотя 64-битный доступ к памяти (через 64-битную же шину данных, но для «32-битного» процессора) появился уже в первых Pentium в 1993 г.. А дело в том, что для целочисленных скалярных вычислений два главных типа операндов — данные и адреса — пока достаточно было иметь лишь 32-битными. Об избыточности 32-битной адресации для 80-90-х гг. уже сказано, но и жёсткая необходимость в 64-битных целочисленных вычислениях, в отличие от 32-битных, также до сих пор не возникала, да и не просматривается и сейчас. Для целых чисел диапазон от –2·10 9 до 2·10 9 или от 0 до 4·10 9 покрывает подавляющее большинство нужд, а редкие моменты 64-битности вполне удовлетворяются дедовским способом — операциями над частями операндов с переносом, что не так уж сильно медленнее и доступно с первых моментов появления 32-битных архитектур. Дополнительной пикантности добавляет тот факт, что 64-битная арифметика над целыми числами в архитектуре x86 появились ещё до AMD64 и EM64T, причём сразу векторная — начиная с набора SSE2 (2001 г.) существуют команды paddq и psubq для сложения и вычитания целых 64-битных компонентов, а команды 32-битного перемножения для любой архитектуры дают 64-битное число (команды деления, соответственно — его принимают; аналогично для многих 16-битных платформ, включая IA-16).

Разрядности некоторых процессоров для ПК

КритерийРазрядность
Функциональныйобработкихраненияобмена
Реализационныйфизич.архитектурн.физич.архитектурн.физич.архитектурн.
Типовой (D: данных; A: адресов)DADADADADADA
i8080/85, Z80888-1616888-16168168-1616
Z800016168-641616168-64168-16238-6423
MC68000/010 (MC68008)16168-323232328-32328-16 (8)24 (20)8-3232
MC68020/03032328-323232328-32328-32328-3232
i8086/186* (i8088/188*)16168-161616168-16168-16 (8)208-1620
i8028616168-161616168-16168-16248-1624
i80386DX32328-323232328-32328-32328-3232
i80386SX (EX/CX)32328-323232328-32328-1624 (26)8-3232
i86032/64|64328-64/64|643232/64/32328-64/64/643264648-6464
i8048632/80328-32/803232/80328-32/803232328-8032
Pentium, K5 (Pentium Pro)32/80328-32/803232/80328-32/80326432 (36)8-8032 (51)
Pentium MMX (Pentium II)32/80|64328-32/80|643232/80|64328-32/80|64326432 (36)8-8032 (51)
K6 (K6-2)32/80| 64(/64)328-32/80| 64(/64)3232/80| 64(/64)328-32/80| 64(/64)3264328-8032
Athlon32/80| 64/64328-32/80| 64/643232/80| 64/64328-32/80| 64/643264368-8051
Athlon XP32/80| 64/64328-32/80| 64/32-1283232/80|64/128328-32/80| 64/1283264368-12851
Pentium III (Pentium 4/M, Core)32/80| 64/64328-32/80| 64(+128)/32-1283232/80| 64(+128)/128328-32/80| 64(+128)/1283264368-12851
Pentium 4 D/EE (Athlon 64*)64/80| 64/64648-64/80|64 + 128/32-1286464/80|64 + 128/128648-64/80|64 + 128/1286464(+16)408-12852
Atom32-64/80| 64/64-128648-64/80|64 + 128/32-1286464/80|64 + 128/128648-64/80|64 + 128/1286464368-12851
Core 2 (i7*)64/80| 128/128648-64/80|64 + 128/32-1286464/80|64 + 128/128648-64/80|64 + 128/1286464 (192+16)408-12852
Athlon II*, Phenom (II)*64/80| 128/128648-64/80|64 + 128/32-1286464/80|64 + 128/128648-64/80|64 + 128/12864128+1640 (48)8-12852

* — Мультиплексированная шина данных и адреса (для ЦП с интегрированным контроллёром памяти — только межпроцессорная)
«A/B|C/D» — для данных указана разрядность скалярного целого / вещественного | векторного целого / вещественного доменов
«X+Y» — имеет домены этого вида двух разрядностей
«X-Y» — в зависимости от команды или ФУ принимает все промежуточные значения с целой степенью двойки

Если вы дочитали до этого места, то объявленная цель статьи, скорее всего, уже достигнута, а Идеальное Конечное Точное Определение разрядности так и не найдено. Может быть, его вообще нет, и это даже хорошо. В конце концов, если компьютер это главный инструмент для работы с информацией, то каждая IT-технология это метод улучшения работы компьютера. Разрядность сама по себе ничего не даст в отрыве от всего остального арсенала высоких инфотехнологий. PDA/коммуникаторы, мобильники, нетбуки, медиа-плееры и прочая карманная электроника, а также гигантское количество встроенных контроллёров и бортовых компьютеров отлично работают, увеличивая свою популярность и без всякой 64-битности. Так зачем тогда переходят на большие разрядности? Зачем, например, никому пока не нужная 64-битность в Intel Atom для нетбуков, где 8 ГБ памяти мало того, что никому не нужны, так ещё и за пару часов досуха выжмут батарею, а научные или экономические вычисления (где могут потребоваться 64 целых бита) никто запускать не будет? Один из возможных ответов: «потому что мы можем». Дополнительная пара миллионов транзисторов для удвоения ещё оставшихся 32-битными блоков утонет каплей в море вентилей, уже потраченных на всё остальное в этом же чипе. Галопирующий прогресс микроэлектроники как главного паровоза IT сделал интегральный транзистор таким дешёвым, что теперь лакомый для любого маркетолога шильдик «64 bit» обойдётся потребителю в десяток лишних центов, обеспечивая совсем не бутафорское, а вполне реальное ускорение на 10-50 % в 1-5 % приложений. И если мелкая овчинка стоит почти бесплатной выделки, почему нет?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *