количество лопастей воздушного винта на что влияет
Скольки лопастной идеальный винт?
Тема создана 12.01.2016
Слышал что наилучшим КПД обладает однолопастной винт, так как меньше создает сам себе турбулентность. У нас чаще двухлопастные, в турбине тягу дают множество лопаток, многие самолеты по четыре лопасти имеют, в чем причина? Максимальные обороты понятно имеют значение, но это критично только для поршневых двигателей, часто и диаметр винта можно увеличить.
Написано 12.01.2016 в 17:08:00
Неравномерная нагрузка на подшипник, т.к. противовес не дает поступательной тяги.
Написано 13.01.2016 в 23:32:58
А ты заметил разницу между 2-х и 3-х лопастным винтом? Может на средних стало лучше тянуть?
У самолета к турбине подключен вентилятор с большим количеством лопаток, это фактически компрессор в виде импеллера в трубе, сужение трубы (сопла) увеличивает скорость выбрасываемого назад воздуха и позволяет разбить бОльшую скорость самолета, вроде как такая схема не очень эффективна и не экономична, гораздо экономичней прикрутить к той же турбине пропеллер (хоть и через редуктор и прочую трансмиссию), но скорости большой нам не развить, потому что пропеллер быстро крутить нельзя, да и диаметр увеличивать нельзя так как концы лопастей начнут вращаться на сверхзвуке и винт теряет эффективность, сверхзвуковых винтов ещё не придумали.
Судя по всему, в авиации увеличивают число лопастей, когда исчерпаны все возможности передать ещё мощности на движитель. Однако, один из самых быстрых винтовых самолетов (Ту-95) имеет 8 лопастей на каждом двигателе (соосно), а ЭйрБбас А-400 тоже имеет 8 лопастей, но на одном винте и его винт один из самых больших в мире (5 с чем-то метров).
Короче, как-то всё не просто, нужен специалист
Вот я тоже рассуждая запутался, здесь похоже не мало тонкостей и одна лопасть идеальна не всегда. Про передачу мощности хорошая мысль, только чем лопатки принципиально отличаются от лопасти? У некоторых турбин для авиамоделей например, если посчитать, концы лопаток в три-четыре раза превышают скорость звука и ничего, работают.
С подшипником, как говорит Денис, думаю вряд ли связано. Если это было бы большой проблемой, то ее не разменивали бы на банальную компактность, как у некоторых планеров с одной лопастью.
Кстати, рабочая область наших винтов сантиметров 30 на каждой лопасти от центра.
Написано 14.01.2016 в 14:35:55
Наткнулся вот на такую весёлую штуку:
РЕАКТИВНЫЙ ТУРБО-ПРОПЕЛЛЕР В. Н. ЮРЬЕВА.
Уже неоднократно были предложения передавать энергию на винт с помощью реактивного (отталкивающего) действия струй воздуха, выходящей через отверстия в заднем краю лопасти винта. Воздух внутрь лопасти предполагалось подавать посредством компрессора (см. рис. 1). Подобное устройство нецелесообразно, так как здесь вес передачи получается слишком большим и, кроме того производительность не очень велика, вследствие больших потерь энергии в компрессоре, трубопроводе и в самой реактивной турбине.
Б. Н. Юрьевым предложена новая оригинальная конструкция реактивного пропеллера, в котором эти недостатки устранены, и который отличается тем, что не требует совершенно мотора. Устройство его довольно просто.
Рис. 2. А — отверстие для воздуха, Б — трубка, подающая горючее, В — форсунки, Г — запальные трубки, Д — выпускное отверстие.
Изготовляется полый пропеллер с небольшим центральным отверстием А (см. рис. 2), через которое, самой же лопастью, действующей здесь, как центробежный насос, всасывается воздух. Из центра воздух центробежной силой отбрасывается к концу лопасти. К концу же лопасти, по трубопроводу Б, подается жидкое горючее, которое разбрызгивается помощью форсунок В. Распыленное топливо смешивается с воздухом и, зажигаясь запальными металлическими или фарфоровыми трубками Г, сгорает. Образующиеся раскаленные газы вырываются через отверстия в запальных трубках и подогревают имеющийся в конце лопасти воздух. Давление его сильно повышается, после чего происходит то же, что и в винте, работающем сжатым воздухом. Необходимый для работы форсунок напор создается насосом, подающим к ним жидкое топливо.
По вычислениям Юрьева, нагревание воздуха, а следовательно и работа винта, требуют совершенно незначительного количества горючего. Для увеличения коэффициента полезного действия этого пропеллера, можно применить легкое предварительное сжатие поступающего в полость его воздуха. Это легко достигается укреплением на втулке „турбо-пропеллера“ центробежного компрессора, приводимого в движенце самим же винтом посредством специальных зубчаток, увеличив число оборотов компрессора до желаемого. Этот же компрессор может быть использован и для улучшения работы „турбо-пропеллера“ на больших высотах, как это делается в высотах бензиновых моторов.
Изобретение автором запатентовано.
Воздушный винт.
Привет, друзья!
Современный воздушный винт.
Итак, что такое воздушный винт? Как я уже говорил, это отдельная самостоятельная единица, а точнее целый лопастной агрегат. Он является движителем для аппарата, на котором установлен, то есть превращает мощность двигателя в тягу и, в конечном счете, в движение.
Человек уже давно проявлял внимание к винту. Первые теоретические свидетельства этого имеются еще в рукописях и рисунках Леонардо да Винчи. А практически его впервые применил (для метеорологических приборов) М. В. Ломоносов. Воздушный винт вначале устанавливался на дирижаблях, в последствии и по сегодняшнее время на самолетах и вертолетах при использовании поршневых и турбовинтовых двигателей. Применяется он также и на наземных аппаратах. Это так называемые суда на воздушной подушке, а также аэросани и глиссеры. То есть история его (как и история всей авиации :-)) длинна и увлекательна и еще, похоже, далеко не закончена.
Что касается теории и принципа действия… Хотел начать рисовать векторные диаграммы, а потом передумал :-). Во-первых не тот сайт, а, во-вторых, все это я уже описал здесь, здесь и даже здесь :-). Скажу лишь, что лопасти воздушного винта имеют аэродинамический профиль, и при его вращении в воздушной среде возникает та же картина, как и при движении крыла.
Аэродинамическая сила (картинка из предыдущей статьи :-))
Все те же аэродинамические силы, тот же скос потока, только теперь уже подъемная сила становится тягой винта, заставляющей самолет двигаться вперед.
Есть, конечно, и свои особенности. Ведь воздушный винт (точнее его лопасти) по сравнению с крылом совершает более сложное движение: вращательное плюс поступательное движение вперед. И на самом деле теория воздушного винта достаточно сложна. Однако для принципиального понимания вопроса всего сказанного вполне достаточно. Остановлюсь только на некоторых особенностях.Замечу, кстати, что винты бывают не только тянущие, но и толкающие (такие, между прочим, стояли на самолете братьев Райт).
Пропеллер немецкого дирижабля SL1 (1911) диаметром 4,4 м.
Воздушный винт для траспортного самолета А400М.
Транспортный самолет А400М.
Транспортник Кролевских ВВС Hercules C-4 на стоянке с винтами во флюгерном режиме.
Диаметр винта и его шаг – это основные технические параметры воздушного винта. Существует еще такое понятие, как крутка. То есть каждая лопасть по всей длинне слегка закручена. Это делается опять же для того, чтобы при одной и той же мощности лопасть создавала наибольшую тягу.
Американский экспериментальный самолет Bell X-22 с импеллерами 1966 г.
Французский экспериментальный самолет с импеллерами NORD 500 CADET. 1967 г.
1932 г. Италия. Экспериментальный самолет с импеллером «Летающая бочка»
Стратегический бомбардировщик ТУ-95.
К сожалению, воздушный винт, особенно в сочетании с поршневым двигателем, имеет все-таки ограниченную область применения. Конечно, там, где так необходимы ближнемагистральные самолеты и так называемая авиация общего назначения он себя еще покажет. Но тем не менее соревнование высота-скорость-дальность он вместе со своим спутником поршнеым мотором уже проиграл турбореактивному двигателю. Но об этом в другой статье…
Технические параметры и устройство винта самолета
Винт самолета (пропеллер) представляет собой агрегат, приводимый в действие двигателем. За счет вращения возникает тяговая сила, заставляющая летательный аппарат двигаться. Винтовые самолеты обладают как преимуществами, так и недостатками. Они гораздо экономичнее реактивных аналогов, однако при этом у них имеется ряд конструктивных ограничений.
Зачем самолету винт?
Самолетный винт ответственен за преобразование крутящего момента двигателя в тяговую силу. Сочетание двигателя с пропеллером именуется винтомоторной установкой. Винт состоит из лопастей, которые при вращении захватывают воздух и отбрасывают его назад.
Воздушные винты подразделяются на тянущие и толкающие. При создании самолетов толкающие пропеллеры применяются крайне редко. Винтовые изделия применяются также для создания вертолетов, винтокрылов, винтопланов и автожиров. Для их поднятия в воздух используются несущие и рулевые изделия.
Отдельно стоит выделить винтопланы, которые сочетают в себе характеристики самолета и вертолета за счет поворотных двигателей. Лопасти несущих винтов винтоплана могут преобразовывать крутящий момент как в тянущую, так и в подъемную силу.
Технические параметры и устройство винта самолета
Пропеллер состоит из ступицы и лопастей. Количество лопастей может быть от 2 до 8. Изделие создается из высокопрочного материала. Как правило, используется термообработанный алюминиевый сплав. Скорость вращения воздушного пропеллера может составлять 1200 оборотов в минуту, поэтому для создания применяются максимально прочные материалы.
Среди основных технических характеристик изделия выделяют:
Работа пропеллера приводит к появлению разворачивающего эффекта. Среди причин появления данного эффекта выделяют реактивный и гироскопический момент винта, а также закручивание струи воздуха. Для того чтобы противостоять разворачивающему эффекту, винтовые самолеты делаются асимметричными.
Тяга воздушных винтов варьируется за счет изменения оборотов двигателя или шага винта. Изменение шага позволяет изменять тягу, не меняя оборотов двигателя. Стоит отметить, что увеличение оборотов, и как следствие, ускорение вращения пропеллера, считается наиболее быстрым способом увеличить тягу.
КПД воздушных винтов составляет примерно 85%. КПД называется отношение полезной мощности к мощности двигателя. Несмотря на высокий КПД, у них имеются недостатки, среди которых выделяют повышенный уровень шума и так называемый эффект запирания (тяга винта после определенных оборотов двигателя перестает увеличиваться, несмотря на возрастание мощности).
Виды самолетных винтов
Для создания винтовых самолетов практически всегда применяются только тянущие варианты. В более редких случаях можно встретить самолеты с толкающими пропеллерами. Толкающие винтовые изделия располагаются в задней части самолета. Стоит отметить, что КПД тянущего винта больше, чем у толкающего.
Несущий вид не встречается на самолетах. Исключением является гибрид, который именуется винтопланом. Лопасти несущих винтов конвертоплана обладают большей длиной. Их примерный размер сопоставим с лопастями вертолета.
Винты с разным количеством лопастей
Лопастной винт самолета должен обладать высокой прочностью и надежностью. Для создания безопасных воздушных суден применяются винтовые изделия с регулируемым шагом, который позволяет изменять положение лопастей. При необходимости это позволяет осуществить флюгирование, чтобы уменьшить лобовое сопротивление при отказе двигателя.
На современном самолете может быть до 4 винтомоторных установок. Средняя скорость винтовых самолетов составляет 500 километров в час. Быстрейшим турбовинтовым самолетом считается Ту-95.
Преимущества и недостатки
Среди главных преимуществ выделяют высокий коэффициент полезного действия и низкий расход топлива у винтовых самолетов. Среди недостатков использования винтомоторных установок выделяют:
Из-за низких скоростей винтовых самолетов их применяют только для ограниченного ряда задач. Турбовинтовые самолеты практически не применяются в пассажирской авиации. В большинстве случаев их используют для транспортировки грузов.
Как пулемет стреляет через винт самолета?
Первые военные истребители были винтовыми. Авиационные инженеры столкнулись с проблемой вращающегося пропеллера. Покрывать огнем цели, находящиеся во фронтальной области, было невозможно. Первое решение проблемы — металлические уголки на лопастях. Если пуля попадала в лопасти, то она рикошетила, при этом не нанося вреда винтовому изделию и экипажу самолета.
Более продвинутое решение изобретено нидерландским авиаконструктором. Для решения поставленной задачи стал использоваться синхронизатор стрельбы. Посредством этой разработки полностью решалась проблема. Стрельба велась только в нужный момент, когда лопасти винтового изделия не мешали выстрелу. Специализированный синхронизатор определял момент вылета пули. Синхронизатор стрельбы уменьшал скорострельность, но при этом позволял вести огонь прямо через лопасти винта несущегося самолета.
На современных истребителях используются реактивные двигатели, поэтому потребности в применении синхронизаторов нет. Винтовые гражданские и военные самолеты не несут на себе пулеметов, поэтому эта проблема их тоже не касается.
Отличия винта от пропеллера
Воздушные винты и пропеллеры являются равнозначными понятиями в авиации, однако винтовые изделия используются во многих других сферах. Лопастные изделия используются при создании:
Пропеллером называются только винтовые изделия, которые применяются для создания самолетов. Например, лопасть несущего винта вертолета нельзя назвать пропеллером. Зная об основных отличиях, можно будет легко классифицировать изделие.
Перспективные разработки
Авиаконструкторы стараются избавиться от недостатков винтовых самолетов. Среди наиболее перспективных разработок выделяют:
Разработка турбовентиляторного двигателя — реализованный проект, который позволил получить высококачественные двигатели. Многие турбовентиляторные двигатели сейчас используются на пассажирских авиалайнерах. Эти двигатели отличает повышенная экономичность, что является существенным фактором в пассажироперевозках.
Для решения проблемы эффекта запирания крутящий момент двигателя разделяется между двумя соосными винтовыми изделиями. Таким образом достигается более высокая скорость при полете. Наиболее успешным самолетом, который использует данный метод, считается Ту-95. Стоит отметить, что для решения проблемы реактивных моментов на вертолете также используются соосные лопасти несущих винтов.
Создание усовершенствованных винтомоторных установок ведется до сих пор, однако составить конкуренцию турбовентиляторным или реактивным вариантам они не могут. Несмотря на это, винтовые судна обладают некоторыми особенностями, которые позволяют использовать их для решения узкоспециализированных задач.
Силовая установка самолета (стр. 2 )
| Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 |
Анализируя вышесказанное, можно сделать выводы:
при поступательной скорости V=0 угол атаки максимальный и равен углу установки лопасти винта;
при увеличении поступательной скорости угол атаки уменьшается и становится меньше угла установки;
при большой скорости полета угол атаки лопастей может стать отрицательным;
чем больше скорость вращения воздушного винта, тем больше угол атаки его лопасти;
если скорость полета неизменна и обороты двигателя уменьшаются, то угол атаки уменьшается и может стать отрицательным.
Сделанные выводы объясняют, как изменяется сила тяги винта неизменяемого шага при изменении скорости полета и числа оборотов.
Сила тяги винта возникает в результате действия аэродинамической силы DR на элемент лопасти винта при его вращении (Рис. 7).
Разложив эту силу на две составляющие, параллельную оси вращения и параллельную плоскости вращения, получим силу ЛР и силу сопротивления вращению DХ элемента лопасти винта.
Суммируя силу тяги отдельных элементов лопасти винта и приложив ее к оси вращения, получим силу тяги винта Р.
Тяга винта зависит от диаметра винта Д, числа оборотов в секунду n, плотности воздуха r и подсчитывается по формуле (в кгс или Н)
(3.6)
Таким образом, сила тяги винта прямо пропорциональна своему коэффициенту, плотности воздуха, квадрату числа оборотов винта в секунду и диаметру винта в четвертой степени.
Так как лопасти винта имеют геометрическую симметрию, то величины сил сопротивления и удаления их от оси вращения будут одинаковые.
Сила сопротивления вращению определяется по формуле
(3.7)
где Схл — коэффициент сопротивления лопасти, учитывающий ее форму в плане, форму профиля, угол атаки и качество обработки поверхности;
К — количество лопастей.
Рис. 7 Аэродинамические силы воздушного винта
Рис. 8. Режимы работы воздушного винта
Сила сопротивления вращению винта относительно его вращения создает момент сопротивления вращению винта, который уравновешивается крутящим моментом двигателя:
Крутящий момент, создаваемый двигателем, определяется (в кгс-м) по формуле
(3.9)
где Ne-эффективная мощность двигателя.
Рассмотренный режим называется режимом положительной тяги винта, так как эта тяга тянет самолет вперед (Рис. 8, а). При уменьшении угла атаки лопастей уменьшаются силы Р и Х (уменьшается тяга винта и тормозящий момент). Можно достичь такого режима, когда Р=0 и X=R. Это режим нулевой тяги (Рис. 8, б).
При дальнейшем уменьшении угла атаки достигается режим, когда винт начнет вращаться не от двигателя, а от действия сил воздушного потока. Такой режим называется самовращением винта или авторотацией (Рис. 8, в).
При дальнейшем уменьшении угла атаки элементов лопасти винта получим режим, на котором сила сопротивления лопасти винта Х будет направлена в сторону вращения винта, и при этом винт будет иметь отрицательную тягу. На этом режиме винт вращается от набегающего воздушного потока и вращает двигатель. Происходит раскрутка двигателя, этот режим называется режимом ветряка (Рис. 8, г).
Режимы самовращения и ветряка возможны в горизонтальном полете и на пикировании.
На самолетах Як-52 и Як-55 эти режимы проявляются при выполнении вертикальных фигур вниз на малом шаге лопасти винта. Поэтому рекомендуется при выполнении вертикальных фигур вниз (при разгоне скорости более 250 км/ч) винт затяжелять на 1/3 хода рычага управлением шага винта.
ЗАВИСИМОСТЬ ТЯГИ ВИНТА ОТ СКОРОСТИ ПОЛЕТА. ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА ТЯГУ ВИНТА
С увеличением скорости полета углы атаки лопасти винта, неизменяемого шага и фиксированного, быстро уменьшаются, тяга винта падает. Наибольший угол атаки лопасти винта будет на скорости полета, равной нулю, при полных оборотах двигателя.
Соответственно уменьшается тяга воздушного винта до нулевого значения и далее становится отрицательной. Раскручивается вал двигателя. Чтобы предупредить раскрутку винта, уменьшают обороты двигателя. Если двигатель не дросселировать, то может произойти его разрушение.
Зависимость тяги винта В530ТА-Д35 от скорости полета изображена на графике Рис. 9. Для его построения замеряют тягу воздушного винта при разных скоростях. Полученный график называется характеристикой силовой установки по тяге.
ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА ТЯГУ ВИНТА.
Выясняя зависимость тяги от скорости полета, рассматривалась работа винта на неизменной высоте при постоянной плотности воздуха. Но при полетах на разных высотах плотность воздуха влияет на тягу воздушного винта. С увеличением высоты полета плотность воздуха падает, соответственно пропорционально будет падать и тяга винта (при неизменных оборотах двигателя). Это видно при анализе формулы (3.6).
Рис. 9 Характеристика силовой установки М-14П по тяге (для Н=500 м) самолетов Як-52 и Як-55 с воздушным винтом В530ТА-Д35
Рис. 10 Тормозящий момент воздушного винта и крутящий момент двигателя
ТОРМОЗЯЩИЙ МОМЕНТ ВИНТА И КРУТЯЩИЙ МОМЕНТ ДВИГАТЕЛЯ.
Как ранее рассматривалось, тормозящий момент винта противодействует крутящему моменту двигателя.
Для того чтобы винт вращался с постоянными оборотами, необходимо, чтобы тормозящий момент Мт, равный произведению , был равен крутящему моменту двигателя Мкр, равному произведению Fd,.т. е. Мт=Мкр или
=Fd (Рис. 10). Если это равенство будет нарушено, то двигатель будет уменьшать обороты или увеличивать.
Увеличение оборотов двигателя приводит к увеличению Мкр и наоборот. Новое равновесие устанавливается на новых оборотах двигателя.
МОЩНОСТЬ, ПОТРЕБНАЯ НА ВРАЩЕНИЕ ВОЗДУШНОГО ВИНТА
Эта мощность затрачивается на преодоление сил сопротивления вращению винта.
Формула для определения мощности воздушного винта (в л. с.) имеет вид:
(3.10)
Из формулы (3.10) видно, что потребная мощность для вращения воздушного винта зависит от коэффициента мощности, от скорости и высоты полета, оборотов и диаметра воздушного винта.
С увеличением скорости полета уменьшается угол атаки элемента лопасти воздушного винта, количество отбрасываемого назад воздуха и его скорость, поэтому уменьшается и потребная мощность на вращение воздушного винта. С увеличением высоты полета плотность воздуха уменьшается и потребная на вращение воздушного винта мощность также уменьшается.
С увеличением оборотов двигателя увеличивается сопротивление вращению воздушного винта и потребная мощность на вращение воздушного винта увеличивается.
Воздушный винт, вращаемый двигателем, развивает тягу и преодолевает лобовое сопротивление самолета, самолет движется.
Работа, производимая силой тяги воздушного винта за 1 с при движении самолета, называется тягой или полезной мощностью воздушного винта.
Тяговая мощность воздушного винта определяется по формуле
(3.11)
С увеличением высоты и скорости полета тяговая мощность воздушного винта уменьшается. При работе воздушного винта, когда самолет не движется, развивается максимальная тяга, но тяговая мощность при этом равна нулю, так как скорость движения равна нулю.
КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ВОЗДУШНОГО ВИНТА. ЗАВИСИМОСТЬ КПД ОТ ВЫСОТЫ И СКОРОСТИ ПОЛЕТА
Часть энергии вращения двигателя затрачивается на вращение воздушного винта и направлена на преодоление сопротивления воздуха, закрутку отбрасываемой струи и др. Поэтому полезная секундная работа, или полезная тяговая мощность винта, nb, будет меньше мощности двигателя Ne, затраченной на вращение воздушного винта.
Отношение полезной тяговой мощности к потребляемой воздушным винтом мощности (эффективной мощности двигателя) называется коэффициентом полезного действия (кпд) воздушного винта и обозначается h. Он определяется по формуле
(3.12)
Рис. 11 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55
Рис. 12 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета
- Что такое драйвер?
- кошки в подвале многоквартирного дома что делать