коммутатор электрический что это
Коммутатор
Коммутатор – это устройство для изменения соединений в электрической цепи.
Коммутатор применяют в энергетике, электротехнике, радиотехнике и проводной связи, деля их на сильноточные и слаботочные. К сильноточным коммутаторам относятся энергетические, в свою очередь, подразделяющиеся на перекидные, вращающиеся и продольно перемещающиеся. Перекидные коммутаторы применяют в электрической цепи постоянного и переменного тока до 1000 А при напряжении 500 В, приводимые в действие каким-либо переключателем. Вращающиеся и продольно перемещающиеся коммутаторы скользят по ряду неподвижных контактов с помощью нескольких ползунов. К таким коммутаторам относятся реостаты, контроллеры и командоаппараты. Элементные коммутаторы могут играть роль измерителей последовательно соединенных аккумуляторов и называются зарядным или разрядным устройством. К сильноточным коммутаторам можно отнести коллекторы электрических машин, в которых для коммутирования тока с большим количеством переключений в единицу времени применяются действующие без разрыва цепи и механического износа контактов ионные и магнитные коммутаторы. К слаботочным цепям относят коммутаторы, которые применяются в телеграфной и телефонной связи, а также в радиотехнических устройствах и телемеханике. Телеграфные коммутаторы иногда бывают ломельные, т. е. состоящие из перпендикулярных латунных реек, изолированных друг от друга, и штепсельные. Телефонный коммутатор – это устройство, которое применяется в телефонной связи при ручном соединении абонентов. Он состоит из вызывного телефонного клапана и реле, которое замыкает телефонную цепь. Шнуровая пара телефонного коммутатора состоит из соединительного шнура, телефонного ключа, приборов сигнализации отбоя. Ключи и штепсели расположены на горизонтальной панели, а клапаны и отбойные лампы – на вертикальной панели.
В радиотехнике коммутатор применяют для изменения соединений приемника с антенной. Сюда включается: переключатель диапазонов, многополюсные галетные переключатели. К данным коммутаторам можно отнести передающие радиостанции, радиолокаторы, ионные разрядники и искровые технические разрядники.
Данный текст является ознакомительным фрагментом.
Коммутация электрических цепей
Среди всех понятий электротехники одно из ведущих мест занимает коммутация электрических цепей. Это понятие используется во многих областях и стоит более подробно рассмотреть, что же это такое?
Понятие коммутации
Коммутацией электрических цепей называются разнообразные переключения, производимые во всевозможных электрических соединениях, а также в кабелях, проводах, трансформаторах, машинах, различных приборах и аппаратах, которые, так или иначе генерируют, распределяют и потребляют электроэнергию.
Как правило, коммутацию сопровождают переходные процессы, возникающие в результате того, что токи и напряжение очень быстро перераспределяются в ветвях электрических цепей.
Режимы электрических цепей
Переход цепи из одного режима в другой, является переходным динамическим процессом. В то время, как при стационарном установившемся режиме, токи и напряжения в цепях постоянного тока остаются неизменными по времени, при переменном токе временные функции периодически изменяются. Установленные режимы при любых параметрах полностью зависят исключительно от источника энергии. Поэтому, каждый источник энергии, постоянный или переменный, создают соответствующий ток. Причем, частота переменного тока полностью совпадает с частотой источника электрической энергии.
Возникновение переходных процессов происходит, когда каким-либо образом изменяются режимы в электрических цепях. Это может быть отключение или подключение цепей, изменения нагрузок, возникновение различных аварийных ситуаций. Все эти переключения и называются коммутацией. С физической точки зрения все процессы перехода энергетических состояний соответствуют режиму до коммутации и после коммутации.
Продолжительность переходных процессов
Длительность процессов очень короткая – вплоть до миллиардных долей секунды. В очень редких случаях, эти процессы, при необходимости, могут составлять до нескольких десятков секунд. Переходные процессы постоянно изучаются, поскольку именно с их помощью производится коммутация электрических цепей.
Работа очень многих устройств, особенно в промышленной электронике, базируется на переходных процессах. Например, продукция электрической нагревательной печи полностью зависит от того, как протекает переходный процесс. Чрезмерно быстрый или очень медленный нагрев могут нарушить технологию и привести к выпуску бракованной продукции.
В общих случаях, процессы электроцепей возникают при наличии в них индуктивных и емкостных элементов, способных осуществлять накопление или отдачу энергии магнитных или электрических полей. В момент начала процесса, между всеми элементами цепи и внешними источниками энергии, начинается процесс перераспределения электроэнергии. Частично, энергия безвозвратно преобразуется в другие виды энергии.
Переходные процессы в электрических цепях
Симистор принцип работы при коммутации
Расчет электрических цепей
Буквенные обозначения элементов на электрических схемах
Компенсация реактивной мощности в электрических сетях
Коммутация электрических цепей
Смотреть что такое «Коммутация электрических цепей» в других словарях:
КОММУТАЦИЯ (электрических цепей) — КОММУТАЦИЯ электрических цепей, процесс переключения электрических соединений в устройствах автоматики, электроэнергетики, электросвязи и т. д. Как правило, сопровождается переходными процессами, возникающими вследствие перераспределения токов и… … Энциклопедический словарь
КОММУТАЦИЯ — электрических цепей процесс переключения электрических соединений в устройствах автоматики, электроэнергетики, электросвязи и т. д. Как правило, сопровождается переходными процессами, возникающими вследствие перераспределения токов и напряжений … Большой Энциклопедический словарь
КОММУТАЦИЯ — Взаимное сообщение, движение двух тел, ударяющихся друг о друга. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. коммутация I. (лат. commutatio изменение, перемена) 1) эл. совокупность операций, связанных с… … Словарь иностранных слов русского языка
коммутация — и; ж. [от лат. commutatio изменение, перемена] 1. Электр. Изменение соединений в электрических цепях (включение, отключение и переключение их отдельных частей), выполняемое при помощи специальной аппаратуры. 2. Техн. Система электрических… … Энциклопедический словарь
Коммутация — I Коммутация (от лат. commutatio перемена) замена барщинных повинностей и натуральных оброков феодально эксплуатируемых крестьян денежной рентой, происходившая в результате и по мере проникновения товарно денежных отношений в феодальную… … Большая советская энциклопедия
Коммутация — Общие понятия 1. Коммутация По ГОСТ 18311 72 Источник: ГОСТ 23150 78: Коммутация каналов и коммутация сообщений в телеграфной связи. Термины и определения … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 50030.5.1-2005: Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления — Терминология ГОСТ Р 50030.5.1 2005: Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления оригинал документа: (обязательное)… … Словарь-справочник терминов нормативно-технической документации
бесконтактная аппаратура — электротехнические и электронные устройства, в которых коммутация электрических цепей (их замыкание, размыкание, переключение), а также преобразование тока или напряжения осуществляются без механического разрыва цепей. * * * БЕСКОНТАКТНАЯ… … Энциклопедический словарь
БЕСКОНТАКТНАЯ АППАРАТУРА — электротехнические и электронные устройства, в которых коммутация электрических цепей (их замыкание, размыкание, переключение), а также преобразование тока или напряжения осуществляются без механического разрыва цепей … Большой Энциклопедический словарь
устройство — 2.5 устройство: Элемент или блок элементов, который выполняет одну или более функцию. Источник: ГОСТ Р 52388 2005: Мототранспортны … Словарь-справочник терминов нормативно-технической документации
Коммутатор (электрический)
Содержание
Принцип работы [ править ]
Коммутатор состоит из набора контактных планок, прикрепленных к вращающемуся валу машины и соединенных с обмотками якоря. По мере вращения вала коммутатор меняет направление тока в обмотке. Для одиночной обмотки якоря, когда вал сделал половину полного оборота, обмотка теперь подключается так, что ток течет через нее в противоположном начальном направлении. В двигателе ток якоря заставляет фиксированное магнитное поле создавать вращающую силу или крутящий момент., на обмотке, чтобы она вращалась. В генераторе механический крутящий момент, приложенный к валу, поддерживает движение обмотки якоря через стационарное магнитное поле, индуцируя ток в обмотке. И в случае двигателя, и в случае генератора коммутатор периодически меняет направление тока через обмотку на противоположное, так что ток в цепи, внешней по отношению к машине, продолжается только в одном направлении.
Простейший практичный коммутатор [ править ]
Практические коммутаторы имеют как минимум три контактных сегмента, чтобы предотвратить «мертвую» зону, где две щетки одновременно соединяют только два сегмента коммутатора. Щетки делаются шире изолированного зазора, чтобы щетки всегда контактировали с катушкой якоря. Для коммутаторов по крайней мере с тремя сегментами, хотя ротор потенциально может остановиться в положении, когда два сегмента коммутатора касаются одной щетки, это только обесточивает одну из лопастей ротора, в то время как другие будут работать правильно. С оставшимися лопастями ротора двигатель может производить достаточный крутящий момент, чтобы начать вращение ротора, а генератор может обеспечивать полезную мощность для внешней цепи.
Конструкция кольца / сегмента [ править ]
Коммутатор состоит из набора медных сегментов, закрепленных на части окружности вращающейся машины или ротора, и набора подпружиненных щеток, прикрепленных к неподвижной раме машины. Две или более неподвижных щеток подключаются к внешней цепи, будь то источник тока для двигателя или нагрузка для генератора.
Сегменты коммутатора подключены к катушкам якоря, причем количество катушек (и сегментов коммутатора) зависит от скорости и напряжения машины. Большие двигатели могут иметь сотни сегментов. Каждый проводящий сегмент коммутатора изолирован от соседних сегментов. Слюда использовалась на ранних машинах и до сих пор используется на больших машинах. Многие другие изоляционные материалы используются для изоляции небольших машин; пластмассы позволяют, например, быстро изготавливать изолятор. Сегменты удерживаются на валу с помощью формы ласточкина хвоста на краях или на нижней стороне каждого сегмента. Изолирующие клинья по периметру каждого сегмента прижимаются так, чтобы коммутатор сохранял механическую стабильность во всем нормальном рабочем диапазоне.
В небольших электроприборах и двигателях инструментов сегменты, как правило, постоянно обжаты и не могут быть удалены. Если двигатель выходит из строя, его выбрасывают и заменяют. На больших промышленных машинах (скажем, мощностью от нескольких киловатт до тысяч киловатт) экономично заменять отдельные поврежденные сегменты, поэтому концевой клин можно откручивать, а отдельные сегменты снимать и заменять. Замена медных и слюдяных сегментов обычно называется «заправкой». Перезаправляемые коммутаторы с ласточкиным хвостом являются наиболее распространенной конструкцией более крупных коммутаторов промышленного типа, но многоразовые коммутаторы также могут быть сконструированы с использованием внешних лент из стекловолокна (конструкция со стеклянными полосами) или кованых стальных колец (конструкция с внешним стальным термоусадочным кольцом и конструкция с внутренним стальным термоусадочным кольцом. ). Одноразовый,Коммутаторы литого типа, обычно используемые в небольших двигателях постоянного тока, становятся все более распространенными в более крупных электродвигателях. Коммутаторы литого типа не подлежат ремонту и в случае повреждения подлежат замене. В дополнение к обычно используемым методам нагрева, крутящего момента и тоннажа для коммутаторов приправы, для некоторых высокопроизводительных коммутаторов требуется более дорогой, специфический процесс «приправы отжимом» или испытание при отжиме с превышением скорости, чтобы гарантировать стабильность отдельных сегментов и предотвратить преждевременное износ угольных щеток. Такие требования являются общими для тяговых, военных, аэрокосмических, ядерных, горнодобывающих и высокоскоростных приложений, где преждевременный отказ может привести к серьезным негативным последствиям.Коммутаторы литого типа не подлежат ремонту и в случае повреждения подлежат замене. В дополнение к обычно используемым методам нагрева, крутящего момента и тоннажа для коммутаторов приправы, для некоторых высокопроизводительных коммутаторов требуется более дорогой, специфический процесс «приправы отжимом» или испытания при отжиме с превышением скорости, чтобы гарантировать стабильность отдельных сегментов и предотвратить преждевременное износ угольных щеток. Такие требования распространены в тяговых, военных, аэрокосмических, ядерных, горнодобывающих и высокоскоростных приложениях, где преждевременный отказ может привести к серьезным негативным последствиям.Коммутаторы литого типа не подлежат ремонту и в случае повреждения подлежат замене. В дополнение к обычно используемым методам нагрева, крутящего момента и тоннажа для коммутаторов приправы, для некоторых высокопроизводительных коммутаторов требуется более дорогой, специфический процесс «приправы отжимом» или испытание при отжиме с превышением скорости, чтобы гарантировать стабильность отдельных сегментов и предотвратить преждевременное износ угольных щеток. Такие требования являются общими для тяговых, военных, аэрокосмических, ядерных, горнодобывающих и высокоскоростных приложений, где преждевременный отказ может привести к серьезным негативным последствиям.процесс или испытание отжима с превышением скорости, чтобы гарантировать стабильность отдельных сегментов и предотвратить преждевременный износ угольных щеток. Такие требования являются общими для тяговых, военных, аэрокосмических, ядерных, горнодобывающих и высокоскоростных приложений, где преждевременный отказ может привести к серьезным негативным последствиям.процесс или испытание отжима с превышением скорости, чтобы гарантировать стабильность отдельных сегментов и предотвратить преждевременный износ угольных щеток. Такие требования являются общими для тяговых, военных, аэрокосмических, ядерных, горнодобывающих и высокоскоростных приложений, где преждевременный отказ может привести к серьезным негативным последствиям.
Конструкция кисти [ править ]
Ранние машины использовали щетки, сделанные из жилы медной проволоки, чтобы контактировать с поверхностью коммутатора. Однако эти твердосплавные щетки имели тенденцию царапать и протирать гладкие сегменты коммутатора, что в конечном итоге требовало повторной обработки поверхности коммутатора. По мере того как медные щетки изнашиваются, пыль и кусочки щетки могут заклинивать между сегментами коммутатора, закорачивая их и снижая эффективность устройства. Тонкая медная проволочная сетка или сетка обеспечивала лучший контакт с поверхностью при меньшем износе сегментов, но сетчатые щетки были дороже, чем ленточные или проволочные медные щетки.
В современных вращающихся машинах с коллекторами почти исключительно используются угольные щетки, в которые может быть добавлен медный порошок для улучшения проводимости. Металлические медные щетки можно найти в игрушечных или очень маленьких двигателях, таких как показанный выше, и в некоторых двигателях, которые работают только с перебоями, например, в автомобильных стартерах.
Двигатели и генераторы страдают от явления, известного как «реакция якоря», одним из эффектов которого является изменение положения, в котором в идеале должно происходить реверсирование тока через обмотки при изменении нагрузки. В ранних машинах щетки устанавливались на кольце с ручкой. Во время работы необходимо было отрегулировать положение щеточного кольца, чтобы отрегулировать коммутацию, чтобы свести к минимуму искрение на щетках. Этот процесс был известен как «раскачивание кистей».
Были разработаны различные разработки для автоматизации процесса настройки коммутации и минимизации искрения на щетках. Одним из них была разработка «щеток с высоким сопротивлением», или щеток, сделанных из смеси медного порошка и углерода. [3] Несмотря на то, что они описывались как щетки с высоким сопротивлением, сопротивление такой щетки было порядка миллиомов, точное значение зависело от размера и функции машины. Кроме того, щетка с высоким сопротивлением была сконструирована не как щетка, а в форме угольного блока с изогнутой поверхностью, соответствующей форме коммутатора.
Угольная щетка с высоким сопротивлением сделана достаточно большой, чтобы она была значительно шире, чем изолирующий сегмент, который она охватывает (а на больших машинах часто может охватывать два изолирующих сегмента). Результатом этого является то, что по мере того, как сегмент коммутатора выходит из-под щетки, ток, проходящий к нему, спадает более плавно, чем в случае со щетками из чистой меди, где контакт внезапно разрывается. Точно так же сегмент, входящий в контакт с щеткой, имеет аналогичное нарастание тока. Таким образом, хотя ток, проходящий через щетку, был более или менее постоянным, мгновенный ток, проходящий через два сегмента коммутатора, был пропорционален относительной площади контакта с щеткой.
Введение угольной щетки имело удобные побочные эффекты. Угольные щетки изнашиваются более равномерно, чем медные, а мягкий уголь вызывает гораздо меньшее повреждение сегментов коллектора. У углерода меньше искр по сравнению с медью, и по мере того, как углерод изнашивается, более высокое сопротивление углерода приводит к меньшему количеству проблем, связанных с скоплением пыли на сегментах коллектора.
Соотношение меди и углерода можно изменить для определенной цели. Щетки с более высоким содержанием меди лучше работают с очень низким напряжением и большим током, тогда как щетки с более высоким содержанием углерода лучше подходят для высокого напряжения и низкого тока. Щетки с высоким содержанием меди обычно выдерживают от 150 до 200 ампер на квадратный дюйм контактной поверхности, в то время как щетки с более высоким содержанием углерода выдерживают только от 40 до 70 ампер на квадратный дюйм. Более высокое сопротивление углерода также приводит к большему падению напряжения от 0,8 до 1,0 вольт на контакт или от 1,6 до 2,0 вольт на коммутаторе. [4]
Держатели для кистей [ править ]
Пружина обычно используется со щеткой, чтобы поддерживать постоянный контакт с коммутатором. По мере того как щетка и коммутатор изнашиваются, пружина постепенно толкает щетку вниз по направлению к коммутатору. В конце концов щетка изнашивается и становится достаточно тонкой, поэтому устойчивый контакт становится невозможным, или она перестает надежно удерживаться в держателе щетки, и поэтому щетку необходимо заменить.
Обычно гибкий силовой кабель подключается непосредственно к щетке, поскольку ток, протекающий через опорную пружину, может вызвать нагрев, что может привести к потере прочности металла и потере натяжения пружины.
Когда коммутируемый двигатель или генератор потребляет больше энергии, чем способна проводить одна щетка, узел из нескольких щеткодержателей устанавливается параллельно на поверхности очень большого коммутатора. Этот параллельный держатель распределяет ток равномерно по всем щеткам и позволяет осторожному оператору удалить неисправную щетку и заменить ее новой, даже когда машина продолжает вращаться с полным питанием и под нагрузкой.
Современные устройства, использующие угольные щетки, обычно имеют конструкцию, не требующую обслуживания, которая не требует регулировки в течение всего срока службы устройства, с использованием фиксированного гнезда держателя щеток и комбинированного узла щетка-пружина-кабель, который вставляется в гнездо. Изношенную щетку вынимают и вставляют новую.
СОДЕРЖАНИЕ
Принцип действия
Коммутатор состоит из набора контактных планок, прикрепленных к вращающемуся валу машины и соединенных с обмотками якоря. Когда вал вращается, коммутатор меняет направление тока в обмотке. Для одиночной обмотки якоря, когда вал совершил половину полного оборота, обмотка теперь подключается так, что ток течет через нее в противоположном начальном направлении. В двигателе ток якоря заставляет фиксированное магнитное поле оказывать вращающую силу или крутящий момент на обмотку, заставляя ее вращаться. В генераторе механический крутящий момент, приложенный к валу, поддерживает движение обмотки якоря через стационарное магнитное поле, индуцируя ток в обмотке. И в случае двигателя, и в случае генератора коммутатор периодически меняет направление тока через обмотку на обратное, так что ток в цепи, внешней по отношению к машине, продолжается только в одном направлении.
Простейший практичный коммутатор
Практические коммутаторы имеют как минимум три контактных сегмента, чтобы предотвратить «мертвую» зону, где две щетки одновременно соединяют только два сегмента коммутатора. Щетки делаются шире изолированного зазора, чтобы щетки всегда контактировали с катушкой якоря. Для коммутаторов, по крайней мере, с тремя сегментами, хотя ротор потенциально может остановиться в положении, когда два сегмента коммутатора касаются одной щетки, это только обесточивает одну из лопастей ротора, в то время как другие по-прежнему будут работать правильно. С оставшимися лопастями ротора двигатель может производить достаточный крутящий момент, чтобы начать вращение ротора, а генератор может обеспечивать полезную мощность для внешней цепи.
Конструкция кольца / сегмента
Коммутатор состоит из набора медных сегментов, закрепленных на части окружности вращающейся машины или ротора, и набора подпружиненных щеток, прикрепленных к неподвижной раме машины. Две или более неподвижных щеток подключаются к внешней цепи, либо к источнику тока для двигателя, либо к нагрузке для генератора.
Сегменты коммутатора подключены к катушкам якоря, причем количество катушек (и сегментов коммутатора) зависит от скорости и напряжения машины. У больших двигателей могут быть сотни сегментов. Каждый проводящий сегмент коммутатора изолирован от соседних сегментов. Слюда использовалась на ранних машинах и до сих пор используется на больших машинах. Многие другие изоляционные материалы используются для изоляции небольших машин; пластмассы позволяют, например, быстро изготавливать изолятор. Сегменты удерживаются на валу с помощью формы ласточкина хвоста на краях или на нижней стороне каждого сегмента. Изолирующие клинья по периметру каждого сегмента прижимаются, так что коммутатор сохраняет механическую стабильность во всем нормальном рабочем диапазоне.
В небольших электроприборах и двигателях инструментов сегменты обычно постоянно обжаты и не могут быть удалены. Когда двигатель выходит из строя, его выбрасывают и заменяют. На больших промышленных машинах (например, мощностью от нескольких киловатт до тысяч киловатт) экономически выгодно заменять отдельные поврежденные сегменты, поэтому концевой клин можно откручивать, а отдельные сегменты снимать и заменять. Замена медных и слюдяных сегментов обычно называется «заправкой». Перезаправляемые коммутаторы с ласточкиным хвостом являются наиболее распространенной конструкцией более крупных коммутаторов промышленного типа, но многоразовые коммутаторы также могут быть сконструированы с использованием внешних лент из стекловолокна (конструкция со стеклянными полосами) или кованых стальных колец (конструкция с внешним стальным термоусадочным кольцом и конструкция с внутренним стальным термоусадочным кольцом. ). Одноразовые коллекторы литого типа, которые обычно используются в небольших двигателях постоянного тока, становятся все более распространенными в более крупных электродвигателях. Коммутаторы литого типа не подлежат ремонту и в случае повреждения подлежат замене. В дополнение к обычно используемым методам нагрева, крутящего момента и тоннажа для коммутаторов приправы, для некоторых высокопроизводительных коммутаторов требуется более дорогой, особый процесс «приправы отжимом» или испытание при отжиме с превышением скорости, чтобы гарантировать стабильность отдельных сегментов и предотвратить преждевременное износ угольных щеток. Такие требования характерны для тяговых, военных, аэрокосмических, ядерных, горнодобывающих и высокоскоростных приложений, где преждевременный отказ может привести к серьезным негативным последствиям.
Конструкция кисти
В ранних машинах для контакта с поверхностью коммутатора использовались щетки из жилы медной проволоки. Однако эти твердосплавные щетки имели тенденцию царапать и протирать гладкие сегменты коммутатора, что в конечном итоге требовало восстановления поверхности коммутатора. По мере того, как медные щетки изнашиваются, пыль и кусочки щетки могут вклиниваться между сегментами коммутатора, закорачивая их и снижая эффективность устройства. Тонкая медная проволочная сетка или сетка обеспечивала лучший контакт с поверхностью при меньшем износе сегментов, но сетчатые щетки были дороже, чем ленточные или проволочные медные щетки.
В современных вращающихся машинах с коллекторами почти исключительно используются угольные щетки, в которые может быть добавлен медный порошок для улучшения проводимости. Металлические медные щетки можно найти в игрушечных или очень маленьких двигателях, таких как показанный выше, и в некоторых двигателях, которые работают только с перебоями, например, в автомобильных стартерах.
Двигатели и генераторы страдают от явления, известного как «реакция якоря», одним из эффектов которого является изменение положения, в котором в идеале должно происходить реверсирование тока через обмотки при изменении нагрузки. В ранних машинах щетки устанавливались на кольце с ручкой. Во время работы необходимо было отрегулировать положение щеточного кольца, чтобы отрегулировать коммутацию, чтобы свести к минимуму искрение на щетках. Этот процесс был известен как «раскачивание кистей».
Были разработаны различные разработки для автоматизации процесса регулировки коммутации и минимизации искрения на щетках. Одним из них была разработка «щеток с высоким сопротивлением», или щеток, сделанных из смеси медного порошка и углерода. Несмотря на то, что такая щетка описывается как щетки с высоким сопротивлением, сопротивление этой щетки составляет порядка миллиомов, точное значение зависит от размера и функции машины. Кроме того, щетка с высоким сопротивлением была сконструирована не как щетка, а в форме угольного блока с изогнутой поверхностью, соответствующей форме коллектора.
Угольная щетка с высоким сопротивлением сделана достаточно большой, чтобы она была значительно шире, чем изолирующий сегмент, который она охватывает (а на больших машинах часто может охватывать два изолирующих сегмента). Результатом этого является то, что по мере того, как сегмент коммутатора выходит из-под щетки, ток, проходящий к нему, спадает более плавно, чем в случае со щетками из чистой меди, где контакт внезапно разрывается. Точно так же сегмент, контактирующий с щеткой, имеет аналогичное нарастание тока. Таким образом, хотя ток, проходящий через щетку, был более или менее постоянным, мгновенный ток, проходящий через два сегмента коммутатора, был пропорционален относительной площади контакта с щеткой.
Введение угольной щетки имело удобные побочные эффекты. Угольные щетки изнашиваются более равномерно, чем медные, а мягкий уголь вызывает гораздо меньшее повреждение сегментов коллектора. У углерода меньше искр по сравнению с медью, и по мере того, как углерод изнашивается, более высокое сопротивление углерода приводит к меньшему количеству проблем, связанных с скоплением пыли на сегментах коллектора.
Соотношение меди и углерода можно изменить для определенной цели. Щетки с более высоким содержанием меди лучше работают с очень низким напряжением и большим током, тогда как щетки с более высоким содержанием углерода лучше подходят для высокого напряжения и низкого тока. Щетки с высоким содержанием меди обычно выдерживают от 150 до 200 ампер на квадратный дюйм контактной поверхности, в то время как щетки с более высоким содержанием углерода выдерживают только от 40 до 70 ампер на квадратный дюйм. Более высокое сопротивление углерода также приводит к большему падению напряжения от 0,8 до 1,0 вольт на контакт или от 1,6 до 2,0 вольт на коммутаторе.
Щеткодержатели
Пружина обычно используется со щеткой, чтобы поддерживать постоянный контакт с коммутатором. По мере того как щетка и коммутатор изнашиваются, пружина постепенно толкает щетку вниз к коммутатору. В конце концов щетка изнашивается и становится достаточно тонкой, поэтому устойчивый контакт становится невозможным, или она перестает надежно удерживаться в держателе щетки, и поэтому щетку необходимо заменить.
Обычно гибкий силовой кабель прикрепляют непосредственно к щетке, потому что ток, протекающий через опорную пружину, может вызвать нагрев, что может привести к потере прочности металла и потере натяжения пружины.
Когда коммутируемый двигатель или генератор потребляет больше энергии, чем способна проводить одна щетка, узел из нескольких щеткодержателей устанавливается параллельно на поверхности очень большого коммутатора. Этот параллельный держатель распределяет ток равномерно по всем щеткам и позволяет осторожному оператору удалить неисправную щетку и заменить ее новой, даже если машина продолжает вращаться с полным питанием и под нагрузкой.
Современные устройства, использующие угольные щетки, обычно имеют конструкцию, не требующую обслуживания, которая не требует регулировки в течение всего срока службы устройства, с использованием фиксированного гнезда держателя щеток и комбинированного узла щетка-пружина-кабель, который вставляется в гнездо. Изношенную щетку вынимают и вставляют новую.
Угол контакта щетки
Различные типы щеток контактируют с коммутатором по-разному. Поскольку медные щетки имеют ту же твердость, что и сегменты коллектора, ротор не может вращаться назад относительно концов медных щеток, если медь не вонзится в сегменты и не вызовет серьезных повреждений. Следовательно, медные щетки из ленты / ламината имеют только касательный контакт с коммутатором, в то время как медные сетчатые и проволочные щетки используют наклонный угол контакта, касающийся их краем через сегменты коммутатора, которые могут вращаться только в одном направлении.
Мягкость угольных щеток обеспечивает прямой радиальный концевой контакт с коммутатором без повреждения сегментов, позволяя легко менять направление вращения ротора без необходимости переориентировать щеткодержатели для работы в противоположном направлении. Хотя никогда не реверсировать, обычные двигатели бытовых приборов, в которых используются роторы, коммутаторы и щетки, имеют радиально-контактные щетки. В случае держателя угольных щеток реактивного типа угольные щетки могут иметь обратный наклон относительно коллектора, так что коллектор имеет тенденцию давить на уголь для прочного контакта.
Коммутационный самолет
Компенсация искажения поля статора
Большинство знакомств с конструкцией двигателей и генераторов начинаются с простого двухполюсного устройства, в котором щетки расположены под идеальным углом 90 градусов от поля. Этот идеал полезен в качестве отправной точки для понимания того, как взаимодействуют поля, но на практике это не то, как работает двигатель или генератор.
В реальном двигателе или генераторе поле вокруг ротора никогда не бывает идеально однородным. Вместо этого вращение ротора вызывает эффекты поля, которые перетаскивают и искажают магнитные линии внешнего невращающегося статора.
Эти полевые эффекты меняются местами, когда направление вращения меняется на противоположное. Поэтому сложно построить эффективную реверсивную коммутируемую динамо-машину, поскольку для максимальной напряженности поля необходимо перемещать щетки на противоположную сторону от нормальной нейтральной плоскости. Эти эффекты могут быть смягчены компенсационной обмоткой на лицевой стороне полюса возбуждения, по которой проходит ток якоря.
Эффект можно рассматривать как аналог опережения по времени в двигателе внутреннего сгорания. Обычно динамо-машина, которая была разработана для работы с определенной фиксированной скоростью, будет иметь свои щетки, постоянно закрепленные для выравнивания поля для максимальной эффективности на этой скорости.
Дополнительная компенсация самоиндукции
В катушках ротора, даже после того, как щетка была достигнута, токи имеют тенденцию продолжать течь в течение короткого момента, что приводит к потере энергии в виде тепла из-за того, что щетка охватывает несколько сегментов коммутатора, и короткое замыкание тока через сегменты.
Чтобы свести к минимуму искрение на щетках из-за этого короткого замыкания, щетки выдвинуты еще на несколько градусов дальше, чем на искривление поля. Это перемещает обмотку ротора, подвергающуюся коммутации, немного вперед в поле статора, которое имеет магнитные линии в противоположном направлении и которое противодействует полю в статоре. Это противоположное поле помогает реверсировать запаздывающий ток самоиндукции в статоре.
Таким образом, даже для ротора, который находится в состоянии покоя и изначально не требует компенсации искажений вращающегося поля, щетки все равно следует выдвигать за пределы идеального угла в 90 градусов, как учат во многих учебниках для начинающих, чтобы компенсировать самоиндукцию.
Ограничения и альтернативы
Хотя двигатели постоянного тока и динамо-машины когда-то доминировали в промышленности, недостатки коммутатора привели к сокращению использования коммутируемых машин в прошлом веке. К этим недостаткам относятся:
Отталкивающие асинхронные двигатели
Это однофазные двигатели переменного тока с более высоким пусковым моментом, чем можно было бы получить с помощью пусковых обмоток с расщепленной фазой до того, как стали практиковаться пусковые конденсаторы с большой емкостью (неполярные, относительно сильноточные электролитические). У них обычный статор с обмоткой, как и у любого асинхронного двигателя, но ротор с проволочной обмоткой очень похож на ротор с обычным коммутатором. Щетки напротив друг друга соединены друг с другом (не с внешней цепью), и действие трансформатора индуцирует токи в роторе, которые развивают крутящий момент за счет отталкивания.
Одна разновидность, отличающаяся регулируемой скоростью, работает непрерывно с контактирующими щетками, в то время как другая использует отталкивание только для высокого пускового момента и в некоторых случаях поднимает щетки, когда двигатель работает достаточно быстро. В последнем случае все сегменты коммутатора также соединяются вместе, прежде чем двигатель наберет скорость.
После достижения скорости обмотки ротора становятся функционально эквивалентными конструкции с короткозамкнутым ротором обычного асинхронного двигателя, и двигатель работает как таковой.
Коммутаторы лабораторные
Коммутаторы использовались как простые переключатели прямого / выключенного / обратного направления для электрических экспериментов в физических лабораториях. Известны два исторических типа:
Коммутатор Румкорфа
По конструкции он аналогичен коммутаторам, используемым в двигателях и динамо-машинах. Обычно его строили из латуни и слоновой кости (позже эбонита ).