коммутируемая мощность что это такое
Базовый международный стандарт на электромеханические реле (IEC 61810-1 Ed. 3): критический обзор
Стандарты Международной Электротехнической Комиссии (МЭК) являются важнейшими документами, регулирующими международную техническую политику, а также техническую политику отдельных стран, национальные стандарты которых написаны на основе стандартов МЭК. Поэтому любые неточности, недомолвки или нечеткие формулировки в стандартах МЭК могут привести к очень серьезным последствиям. Но так ли уж идеальны действующие сегодня стандарты? Попробуем разобраться в этом вопросе на основе критического анализа одного из базовых стандартов в области электрических реле: IEC 61810-1 (Ed. 3): Electromechanical elementary relays — Part 1: general requirements.
Электромеханические реле являются важнейшими элементами систем автоматики и выпускаются во всем мире миллионами штук. Поэтому к базовому стандарту на электромеханические реле должны предъявляться высокие требования. Что же мы видим на самом деле?
1. Термины и определения
В п. 3.7.1. раздела «Термины и Определения» дается определение двум терминам: «функциональная изоляция» и «базовая изоляция», которые далее используются в стандарте. Согласно IEC 61810-1 «функциональной» является изоляция, необходимая только для правильного функционирования реле, а «базовой» является изоляция, предотвращающая поражение электрическим током. В качестве разъяснения разницы между этими двумя видами изоляции, в примечаниях к таблицам 10 и 11 приводится пример «функциональной» изоляции как изоляции между контактами реле, необходимой, как утверждается в стандарте, только для правильного функционирования реле. С этим утверждением нельзя согласиться. Совершенно очевидно, что одна и та же изоляция может быть и «базовой» и «функциональной» в зависимости от конкретного применения реле. Так, например, если контакты реле производят переключение в электрических цепях, недоступных для прикосновения человеком, то изоляция между контактами реле действительно является чисто функциональной, но если контакты реле отключают от источника напряжения части электроустановки к которым имеется доступ человека (прямой или опосредованный, через другие электрические цепи) то это уже базовая изоляция. С другой стороны, реле часто используется для гальванической развязки разнопотенциальных цепей аппаратуры, при этом изоляция между катушкой и контактами реле не имеет никакого отношения к безопасности человека и является чисто функциональной, тогда как в других случаях применения реле она является именно базовой. Таким образом, получается, что определить вид изоляции реле в общем случае, то есть без привязки к конкретному его применению, нельзя и устанавливать различные требования к электрической прочности изоляции реле только по этим заранее детерминированным определениям нельзя. Но тогда зачем вообще нужны эти термины?
2. Номинальные значения токов и напряжений
В разделе 5.1 и 5.7 стандарта IEC 61810-1 приводятся ряды номинальных значений постоянного напряжения, для катушки: 1,5; 3; 4,5; 5; 9; 12; 24; 28; 48; 60; 110; 125; 220; 250; 440; 500 Вольт, постоянного тока; 6; 12; 24; 48; 100/v3; 110/v3; 120/v3; 100; 110; 115; 120; 127; 200; 230; 277; 400; 480; 500 Вольт переменного тока; и, соответственно, для контактов реле, работающих на активную нагрузку: 4,5; 5; 12; 24; 36; 42; 48; 110; 125; 230; 250; 440; 500 Вольт постоянного или переменного тока.
В таблицах 16 и 17, соответственно, приведены совершенно иные ряды номинальных значений напряжений: 10; 12,5; 16; 20; 25; 32; 40; 50; 63; 80; 100; 125; 160; 200; 250; 320; 400; 500; 630 и 12,5; 24; 25; 30; 32; 42; 48; 50; 60; 63; 100; 110; 120; 125; 127; 150; 160; 200; 208; 220; 230; 240; 250; 277; 300; 320; 380; 400; 440; 480; 500; 575; 600; 630.
Во-первых, для корректного обозначения величины переменного тока принято указывать о каком именно значении идет речь (амплитудном, среднем, действующем), что в стандарте не сделано.
Во-вторых, вызывает недоумение существенные различия в рядах номинальных значений напряжений. По нашему мнению, это совершенно неоправданно и не логично, поскольку, как правило, и контакты и катушки реле включаются в электрические цепи одной и той же аппаратуры, имеющей определенный ряд номинальных значений напряжений. Почему эти ряды должны быть разными для цепей контактов, цепей катушек и внутренних источников напряжения одной и той же аппаратуры, не понятно.
В-третьих, ряды токов и напряжений для контактов реле в данном стандарте не соответствуют классам нагрузки контактов, принятом в стандарте IEC 61810-7 Electromechanical elementary relays — Part 7: Test and measurement procedures.
В разделе 5.7 в качестве минимального значение напряжения нагрузки для контактов реле принято напряжение 4,5 В, а минимальный ток 0,1 А. В то же время, хорошо известно, что в электронных цепях используются напряжения гораздо ниже 4,5 В (0,5-1 В), а токи гораздо меньше 0,1 А (0,005- 0,01 А) и миниатюрные электромеханические реле с раздвоенными (bifurcate) позолоченными контактами широко используются для переключений в этих цепях. Что же делать с такими реле, которые реально присутствуют на рынке, широко используются, но не соответствуют стандарту IEC 61810-1? С другой стороны, ток в 100 А, указанный как максимальное значение в раду номинальных токов в цепи контактов, более характерен для мощных контакторов, чем для реле.
Максимальные значения номинальных напряжений в ряду 400-440 В, по нашему мнению, не корректны, так как не отражают существующую реальность. С одной стороны, существуют стандартные напряжения 660 В и 1140 В, широко используемые в промышленности, с другой стороны, многие компании производят малогабаритные открытые электромеханические реле на напряжения 4-5 кВ (Hehgsler-Ka Co., Italiana Rele, SPS Electronic GmbH, Magnecraft), а также газонаполненные и вакуумные реле на напряжения 70 кВ и выше (Kilovac, Gigavac, Jennings Technologies). Многими компаниями выпускаются и высоковольтные герконовые реле на напряжения 10-20 кВ [1]. Разработаны слаботочные реле с изоляции между катушкой и контактами до 120 кВ [2]. Такие реле широко используются в мощной электрофизической, радиоэлектронной и медицинской аппаратуре, испытательных установках и пр. Получается, что на рынке реально присутствует большая группа электромеханических реле, фактически не охваченная существующим общим стандартом, несмотря на то, что объектом приложения этого стандарта являются, как утверждается в первом разделе стандарта, все электромеханические реле без разделения их на реле низкого и высокого напряжения. Вполне логичным выходом из такой ситуации было бы изменение названия этого стандарта (например, на: «Low-voltage electromechanical elementary relays») и ограничение области его применения только на реле низкого напряжения (с номинальным напряжением до 1000 В).
В разделе 5.7а стандарта IEC 61810-1 указывается, что ряды номинальных значений токов и напряжений для индуктивных нагрузок должны соответствовать приложению «В». Однако, в приложении В нет никаких рядов номинальных значений токов и напряжений. В этом приложении указана перегрузочная способность контактов при замыкании и размыкании контактов (в виде кратности относительно номинальных значения токов и напряжений). Указанные в таблице В1 классы нагрузки АС-15 и DC-13 являются так называемыми «категориями применения» и характеризуют нагрузки в виде катушек управления электромагнитных аппаратов управления: реле, контакторов и пускателей с токами, в доли-единицы ампер, в то время как стандарт IEC 61810-1 распространяется на реле с коммутируемым током в десятки ампер (до 100 А). Таким образом, налицо явное несоответствие. Фактически, стандарт IEC 61810-1 не определяет коммутирующую способность реле для индуктивной нагрузки, а лишь запутывает ситуацию, поскольку для токов в десятки ампер категории АС-15 и DC-13 не применимы.
3. Документация и маркировка
3.1. В качестве одного из важнейших параметров реле, который должен быть отражен в каталоге или инструкции по эксплуатации реле согласно стандарту IEC 61810-1 является тип разрыва цепи, обеспечиваемого контактами реле. В соответствии с таблицей 4 (п. 7.1) должен быть указан один следующих типов разрыва цепи: микроразрыв (3.5.16), микро-отключение (3.5.17) или полное отключение (3.5.18). Как следует из раздела «Термины и определения», отличия между этими типами разрыва цепи заключаются в величине контактного зазора, то есть, в конечном счете, в электрической прочности межконтактного зазора. Зачем понадобилось изобретать специальную терминологию, мало понятную потребителям реле и вводить ее в техническую документацию на реле, если вместо всего этого было бы достаточно указать электрическую прочность межконтактного зазора?
3.2. В качестве другого обязательного параметра, который должен быть отражен в технической документации, в таблице 4 указывается тип изоляции, в том числе функциональная или базовая. Тут же в примечании отмечается, что она зависит от применения реле (как именно, мы уже показали выше). Но если она зависит от конкретного применения реле и заранее не может быть определена, то что же тогда должно быть указано в технической документации?
3.3. Наряду с крайне сомнительными по своей информативности и определенности параметрами, которые стандарт IEC 61810-1 требует указывать в технической документации, из рассмотрения выпали такие важнейшие параметры реле, как время срабатывания и отпускания, время дребезга контактов, величина переходного сопротивления контактов, постоянная времени катушки управления, минимальные коммутируемые напряжение и ток, и др., о которых даже не упоминается как о параметрах, необходимых для обязательного указания в технической документации.
3.4. В п. 7.1 (табл. 4 Стандарта) предлагается способ обозначения допустимой нагрузки контактов реле посредством указания типа нагрузки, тока и напряжения (без указания какого: максимального или номинального). В п. 7.4 (табл. 6 Стандарта) приводятся примеры маркировки коммутационной способности контактов реле, допускающий обозначение только номинальных значений коммутируемых токов и напряжений в виде: 16 А 230 В (или 16/230), даже без указания типа нагрузки (cosϕ на переменном токе или отношение L/R — на постоянном). Следует отметить, что такое обозначение не дает потребителю информации об истинной коммутационной способности контактов реле и способно лишь ввести его в заблуждение.
Во-первых, без обязательного обозначения типа нагрузки просто невозможно оценить коммутационную способность реле, поскольку ее изменения в зависимости от вида нагрузки весьма существенны. Например, для силового реле типа G7Z (Omron) допустимый коммутируемый ток изменяется от 40 А при чисто активной (резистивной) нагрузке до 22 А при смешанной нагрузке с cosφ = 0,3.
Во-вторых, в п. 7.1 говорится о коммутируемом токе и напряжении, а в п. 7.4 о номинальном значении коммутируемого тока и напряжения, а это может быть совсем не одно и то же, так как в соответствии с объяснением п. 3.3.16 стандарта, под номинальным значением понимается значение величины, соответствующее специально оговоренным условиям. То есть, «номинальный коммутируемый ток» — это ток при определенных, оговоренных условиях. Такими условиями могут быть напряжение на контактах, частота, вид нагрузки. Однако в стандарте IEC 61810-1 нет никаких разъяснений по поводу того, что понимается под термином «номинальный коммутируемый ток» или «номинальное коммутируемое напряжение», что делает практически невозможным корректное использование этих терминов и связанных с ними значений.
Например, что такое «номинальный коммутируемый ток 16 А»? Это ток при напряжении на контактах 250 В или только при напряжении не более 125 В? Это ток только для чисто активной нагрузки, или для смешанной тоже? И так далее.
В-третьих, поскольку понятие «номинальный» в стандарте не оговорено, обозначение на корпусе реле коммутационной способности контактов в виде: «16 А 230 В» отнюдь не всегда говорит о том, что контакты реле могут коммутировать ток 16 А при напряжении 230 В.
Во многих случаях, идет речь о значениях тока и напряжения, характеризуемых в технической документации производителей реле, как «максимальные значения». При этом указывается максимальное коммутируемое напряжение, максимальный коммутируемый ток и максимальная коммутируемая мощность. Как правило, максимальная коммутируемая мощность не равна произведению максимального тока на максимальное напряжение, см. табл. 1. Это связано с тем, что величина максимально допустимого коммутируемого тока одним и тем же контактом в сильной степени зависит от величины напряжения, особенно на постоянном токе, и от вида нагрузки, рис. 1.
К сожалению, в стандарте IEC 61810-1 такие «тонкости» даже не упоминаются, что существенно затрудняет его практическое использование.
Тип реле и производитель | Максимальный коммутируемый ток | Максимальное коммутируемое напряжение | Максимальная коммутируемая мощность | Произведение тока на напряжение |
---|---|---|---|---|
750-523 (Wago) | 16A AC | 440V AC | 5000 VA | 7040 VA |
J114FL (CIT Relays) | 16 A | 440V AC 125V DC | 4000 VA 480 W | 7040 VA 2000 W |
CT (NAiS) | 8 A AC | 380V AC | 2000 VA | 3040 VA |
G2RL (Omron) | 12A AC | 440 V AC | 3000 VA | 5280 VA |
4. Испытание реле
4.1. В п. 8.2 стандарта указывается, что испытание реле на нагрев производится при включенной катушке (катушках) реле и нагрузке током всех контактов. На практике реализовать это требование невозможно, по следующим причинам:
Во-первых, одновременная подача напряжения на обе катушки управления в реле с двумя катушками (характерными для двухпозиционного реле с защелкой) может привести к механическому повреждению механизма защелки.
Во-вторых, катушки управления в двухпозиционных реле с защелкой, как правило, не предназначены для длительной работы под током и могут просто сгореть во время испытания.
В-третьих, если в реле имеются и нормально открытые и нормально закрытые контакты, то как можно загрузить током одновременно все контакты, как того требует стандарт?
4.2. В п. 10.3 описана процедура испытания диэлектрической прочности изоляции реле. При этом в качестве одноминутного испытательного напряжения рекомендуется применять переменное синусоидальное напряжение частотой 50 или 60 Гц или постоянное напряжение, величина которого выбирается из таблицы 10 или 11. Сравнивая между собой эти две таблицы можно заменить, что приведенные в них значения напряжений совершенно идентичны для одних и тех же видов присоединения. Но ведь в одном случае речь идет о действующем значении напряжения переменного тока, а в другом — о напряжении постоянного тока! Как известно, напряжение в 1000 В действующего значения переменного тока воздействует на изоляцию совсем не так, как напряжение в 1000 В постоянного тока. С точки зрения воздействия на изоляцию, даже в самом простейшем случае, то есть, даже пренебрегая известными физическими эффектами, связанными с воздействием частоты переменного напряжения на изоляцию, следует, как минимум, ввести коэффициент 1.41 в качестве соотношения между этими напряжениями, о чем в стандарте IEC 61810-1 даже не упоминается.
4.3. При испытаниях на коммутационную износостойкость в качестве критерия оценки состояния реле предлагается использовать такие понятия, как «сбой в замыкании» или «сбой в размыкании» контактов. Причем под «сбоем» понимается такое состояние (контактов) когда они не в состоянии выполнять свои функции. Определенное количество и последовательность сбоев при испытании характеризует исправность или неисправность реле. Наряду с этим критерием, для оценки исправности реле применяется его повторное испытание на электрическую прочность изоляции. Однако, хорошо известно, что после большого количества циклов срабатывания под максимальным током может существенно измениться не только электрическая прочность изоляции внутри реле, но и межконтактное сопротивление (вследствие эрозии контактных поверхностей). Известно также, что при использовании контактов реле в слаботочных цепях электронной аппаратуры, именно существенное возрастание сопротивления контактов является одной из частых причин отказа этой электронной аппаратуры. В таком случае можно констатировать, что реле не в состоянии выполнять свои функции (то есть соединять цепи) и к нему применим термин «отказ». Следовательно, межконтактное сопротивление является важнейшим критерием при оценке исправности реле и должно быть применено в качестве еще одного критерия при испытаниях реле на коммутационную износостойкость.
5. Выводы
Проведенный анализ показал, что последняя (третья) редакция стандарта IEC 61810-1 содержит большое количество неточностей и даже ошибок в важнейших разделах, поэтому при практическом использовании этого стандарта необходимо проявлять осторожность. При разработке или пересмотре национальных стандартов, основывающихся на данном международном стандарте, необходимо учитывать обнаруженные неточности и ошибки.
Литература
В. И. ГУРЕВИЧ, канд. техн. наук
Коммутируемая мощность что это такое
Источники питания электронной аппаратуры, импульсные и линейные регуляторы. Топологии AC-DC, DC-DC преобразователей (Forward, Flyback, Buck, Boost, Push-Pull, SEPIC, Cuk, Full-Bridge, Half-Bridge). Драйвера ключевых элементов, динамика, алгоритмы управления, защита. Синхронное выпрямление, коррекция коэффициента мощности (PFC)
Обратная Связь, Стабилизация, Регулирование, Компенсация
Организация обратных связей в цепях регулирования, выбор топологии, обеспечение стабильности, схемотехника, расчёт
Первичные и Вторичные Химические Источники Питания
Li-ion, Li-pol, литиевые, Ni-MH, Ni-Cd, свинцово-кислотные аккумуляторы. Солевые, щелочные (алкалиновые), литиевые первичные элементы. Применение, зарядные устройства, методы и алгоритмы заряда, условия эксплуатации. Системы бесперебойного и резервного питания
Высоковольтные выпрямители, умножители напряжения, делители напряжения, высоковольтная развязка, изоляция, электрическая прочность. Высоковольтная наносекундная импульсная техника
Электрические машины, Электропривод и Управление
Электропривод постоянного тока, асинхронный электропривод, шаговый электропривод, сервопривод. Синхронные, асинхронные, вентильные электродвигатели, генераторы
Технологии, теория и практика индукционного нагрева
Системы Охлаждения, Тепловой Расчет – Cooling Systems
Охлаждение компонентов, систем, корпусов, расчёт параметров охладителей
Моделирование и Анализ Силовых Устройств – Power Supply Simulation
Моделирование силовых устройств в популярных САПР, самостоятельных симуляторах и специализированных программах. Анализ устойчивости источников питания, непрерывные модели устройств, модели компонентов
Силовые полупроводниковые приборы (MOSFET, BJT, IGBT, SCR, GTO, диоды). Силовые трансформаторы, дроссели, фильтры (проектирование, экранирование, изготовление), конденсаторы, разъемы, электромеханические изделия, датчики, микросхемы для ИП. Электротехнические и изоляционные материалы.
Интерфейсы
Форумы по интерфейсам
все интерфейсы здесь
Поставщики компонентов для электроники
Поставщики всего остального
от транзисторов до проводов
Компоненты
Закачка тех. документации, обмен опытом, прочие вопросы.
Майнеры криптовалют и их разработка, BitCoin, LightCoin, Dash, Zcash, Эфир
Обсуждение Майнеров, их поставки и производства
наблюдается очень большой спрос на данные устройства.
Встречи и поздравления
Предложения встретиться, поздравления участников форума и обсуждение мест и поводов для встреч.
Ищу работу
Предлагаю работу
нужен постоянный работник, разовое предложение, совместные проекты, кто возьмется за работу, нужно сделать.
Куплю
микросхему; устройство; то, что предложишь ты 🙂
Продам
Объявления пользователей
Тренинги, семинары, анонсы и прочие события
Общение заказчиков и потребителей электронных разработок
Обсуждение проектов, исполнителей и конкурсов
Коммутация нагрузок переменного тока
Доброго времени суток.
Речь пойдёт о коммутации нагрузок переменного тока.
На просторах интернета находятся сотни вариантов управления ТЭНами и лампочками через симистор.
Вот типовое решение.
Но симистор имеет несколько важных недостатков:
— Он может сам включится.
— Он не подходит для коммутации мощных нагрузок.
По опыту работы если в качестве С2 использовать CL21(CBB21) 0.01uF 630V», Китай» их будет часто пробивать, что приводит к замыканию цепи управления.
Вот как это западло выглядит на сайте всем известного магазина:
Вот как такой конденсатор может выглядеть в готовом изделии.
На данной схеме резистор R4 не установлен, вся цепь кроме С2 живая. Такой пробой не единичный случай, это просто самый наглядный. Экономить на конденсаторах не выгодно потому как нагрузка разная бывает, может быть и опасно такое включение.
Помимо симисторов существует ещё один вариант.
И это контакторы, которыми можно управлять как раз этими самыми симисторами.
Это как реле, но большое. На рисунке представлен один из самых часто распространнёных и маленьких экземпляров.
Однако, речь дальше пойдёт о тиристорах.
Я не буду приводить здесь теорию про тиристоры, желающие могут почитать здесь.
Основные отличия от симисторов:
— Больший коммутируемый ток (хотя в СССР выпускались симисторы — монстры).
— Большая надёжность коммутации.
Основные отличия от контакторов:
— Меньшие габариты и вес.
— Большая скорость коммутации.
Они выпускаются как в виде отдельных тиристоров:
Обычно они устанавливаются парами на теплоотвод. Выглядит это в железе обычно как-то так:
Так и в виде модулей, состоящих из двух тиристоров в одном корпусе:
В живую они обычно выглядят как блок, установленный на теплоотвод:
Основным отличием от симистора сдрайвером будет необходимость включать тиристоры в каждом полупериоде.
Из всей теории я приведу следующий рисунок:
На нём изображены коммутируемое напряжение (U), коммутируемый ток (i) и импульсы включения тиристоров (iупр.).
Как видно из графика коммутация производится при ноле тока, а не напряжения, что принципиально важно.
Существует множество способов включения тиристоров. Но основным на сегодня является включение тиристора двуполярными импульсами, при этом частота импульсов должна быть больше сетевой. Таким образом когда мы подаём команду включения тиристорам, они включатся во время ближайшего, подходящего импульса. А поскольку частота импульсов большая то включение произойдёт практически мгновенно. И если ток через тиристор меньше тока удержания, то каждый следующий импульс будет снова открывать тиристор, что при большой частоте импульсов не будет заметно для питаемой нагрузки.
Отключение тиристоров происходит при снижении коммутируемого тока ниже тока удержания. Что при пропадании импульсов управления приведёт к скорейшему закрытию тиристора при переходе тока через ноль в конце полупериода.
Схема управление тиристорами похожа на такую:
Во вложении более крупная картинка и схема.
На микросхемах CD4069 и CD4013 собран генератор управляющих импульсов.
В точках А и В получаются вот такие сигналы (осторожно модель)
Этот генератор может быть общим для достаточно большого числа каналов управления. Его всегда можно заменить 2 выводами микроконтроллера, но разумнее микроконтроллер разместить на отдельной плате.
Создание каналов управления производится копирование всего куска поле точек А и В.
Трансформатор Т1 используется в первую очередь как гальваническая развязка. К тому на каком магнитопроводе он будет намотан требования очень расплывчатые.
Всё что идет до VT1 рекомендуется делать на отдельной плате управления. Соединение плат лучше выполнять между VT1 и R10. В случае использования модульных тиристоров в точках обозначенных + и — подпаиваются проводники с наконечниками, при этом цвет проводников + и — должен быть различным иначе очень легко запутаться.
Предохранитель FU1 нужен для обрыва цепи в случае пробоя тиристоров или неправильной их коммутации.
В случае перенапряжений обычно выбивает VD1-VD4 и резисторы на высокой стороне. R11 должен быть в корпусе 2512, остальное допустимо применять в корпусе 1206. Резистор R15 должен быть огнестойкий (серенькие такие). Конденсаторы 1206 все кроме С10.
Вот как-то так. Про цепи измерения и питания будет отдельно ибо мне влом.