конденсатор на землю для чего
Развязывающие конденсаторы: они нужны, но зачем?
Статья является частью руководства, посвященного практическим аспектам и особенностям проектирования электроники с использованием операционных усилителей (ОУ) – от выбора типа ОУ до тайных приемов опытного разработчика и хитростей отладки. Руководство написано Брюсом Трампом, инженером-разработчиком с почти тридцатилетним стажем, успевшим до Texas Instruments поработать в легендарной компании Burr-Brown. В настоящее время Трамп является ведущим блогером информационного ресурса Texas Instruments “E2E” по аналоговой тематике и готовит к печати книгу об операционных усилителях.
Мы публикуем перевод руководства Трампа на нашем сайте регулярно – дважды в месяц.
Всем известно, что операционные усилители должны иметь развязывающие конденсаторы по цепям питания, расположенные рядом с выводами микросхемы. Но почему, например, какой-то усилитель вдруг оказывается более склонным к самовозбуждению без надлежащей развязки? Ответы на эти вопросы расширят ваш кругозор и облегчат понимание ситуации.
Коэффициент подавления шумов напряжения питания (Power supply rejection) характеризует способность операционного усилителя подавлять колебания и пульсации, возникающие на выводах питания. Например, на рисунке 65 показано, что коэффициент подавления шумов очень высок на низкой частоте, но с увеличением частоты уменьшается. Таким образом, на высоких частотах наблюдается более слабое подавление возникающих помех.
Рис. 65. Цепь питания V+ без надлежащего развязывающего конденсатора имеет высокий импеданс
Мы часто думаем о внешних шумах, идущих от источника питания и мешающих усилителю. Но операционные усилители могут сами быть источником проблем. Например, выходной ток нагрузки течет от вывода питания. Без надлежащего развязывающего конденсатора импеданс на входе питания может быть высоким. Это позволяет переменному току нагрузки (AC) генерировать переменное напряжение на этом выводе и создает паразитный контур цепи обратной связи. Индуктивность вывода питания может дополнительно увеличить результирующее переменное напряжение. На высокой частоте, когда коэффициент подавления помех по питанию имеет малое значение, эта паразитная обратная связь может вызвать осцилляции.
Без обеспечения стабильного питания узлы внутренней схемы могут взаимодействовать друг с другом, создавая нежелательные паразитные контуры обратной связи. Это происходит из-за того, что внутренние схемы ОУ спроектированы для работы с устойчивым малым значением импеданса на входах питания. Усилитель может вести себя совершенно непредсказуемо без стабильного и низкоомного питания.
При подаче синусоидального сигнала на вход усилителя с недостаточно качественной развязкой на цепях питания паразитная обратная связь приводит к искажению формы выходного сигнала. Сигнальные токи, протекающие через выводы питания, зачастую сильно искажены, поскольку они представляют только половину тока синусоидальной волны (рисунок 66). Цепи паразитной ОС вызовут дополнительное искажение выходного сигнала при различных значениях коэффициента подавления помех по положительному и отрицательному питаниям.
Рис. 66. Форма сигнальных токов на выводах питания зачастую сильно искажена, потому что они представляют только половину синусоидального тока (справа)
Проблемы усугубляются при увеличении нагрузки. Реактивная нагрузка создает сдвинутые по фазе токи, которые могут дополнительно ухудшить ситуацию. Емкостная нагрузка сама по себе подвергает схему более высокому риску возникновения колебаний из-за дополнительного фазового сдвига в цепи обратной связи. Для таких случаев могут потребоваться танталовые развязывающие конденсаторы большой емкости и особая осторожность при выполнении электрической разводки схемы.
Конечно, не все усилители с недостаточной развязкой по питанию подвержены осцилляциям. Иногда для установления колебаний не хватает положительной обратной связи или задержки, вносимой цепями ОС. Тем не менее, эффективность схемы может быть снижена. Частотная характеристика и импульсный отклик также подвержены влиянию чрезмерного перерегулирования и плохого времени установления. Эти особенности не очень хорошо моделируются в TINA-TI или других программах SPICE-моделирования. Источники напряжения в SPICE абсолютно стабильные и нечувствительны к токам нагрузки. Моделирование фактического импеданса источника питания и паразитных параметров печатной платы оказывается весьма сложным и неточным процессом. В лучших макромоделях моделируется величина коэффициента подавления помех по питанию, но фазовая связь этих цепей обратной связи вряд ли соответствует действительности. Моделирование может быть чрезвычайно полезным, но не всегда точно прогнозирует такое поведение.
Однако, не нужно сходить с ума, думая о развязке цепей питания. Достаточно внимательно относиться к особенно чувствительным ситуациям и признакам потенциальных проблем. Хорошая аналоговая схема выигрывает от приложения хорошей порции знаний.
Список ранее опубликованных глав
Переведено Вячеславом Гавриковым по заказу АО КОМПЭЛ
Чистое питание для каждой микросхемы, часть 1: Понятие конденсаторов развязки
Полное понимание конденсаторов развязки (блокировочных конденсаторов) поможет вам правильно включать эти критически важные компоненты в ваши проекты.
Конденсаторы, конденсаторы везде
Не исключено, что увлеченный, успешный инженерный студент закончил колледж, почти ничего не узнав об одном из самых распространенных и важных компонентов, которые можно найти в реальных схемах: о блокировочном конденсаторе (конденсаторе развязки). Даже опытные инженеры могут не совсем понимать, почему они включают керамические конденсаторы на 0,1 мкФ рядом с каждым выводом питания каждой микросхемы на каждой печатной плате, которую они проектируют. В данной статье содержится информация, которая поможет вам понять, почему необходимы блокировочные конденсаторы, и как они улучшают производительность схемы, а следующая статья будет посвящена деталям, связанным с выбором конденсаторов развязки и методам компоновки печатных плат, которые максимизируют их эффективность.
Опасности переходного тока
Любой компонент, в котором выходные сигналы быстро переходят из одного состояния в другое, будет генерировать переходные токи. Когда эти переходные токи тянутся непосредственно от источника питания, в результате импеданса источника питания, а также паразитной индуктивности, связанной с проводами и проводниками на печатной плате, создаются переходные напряжения. Этот эффект становится всё более проблематичным, когда компонент должен управлять низкоомной или высокоемкостной нагрузкой: низкоомные нагрузки создают высокие амплитуды переходных процессов, а высокоемкостные нагрузки могут приводить к звону или даже значительным колебаниям в линии питания. Конечным результатом может быть что угодно: от неоптимальной производительности схемы до отказа системы.
Давайте кратко рассмотрим эту проблему переходного тока, используя очень простое моделирование.
Схема моделирования
Временные диаграммы входного и выходного напряжений и тока источника питания
Эта схема – это известный CMOS инвертор, что подтверждается связью между входным и выходным напряжениями. Хотя чрезвычайно умная конструкция этого инвертора не требует стабильного напряжения, нам нужно помнить, что значительный переходной ток протекает, когда входное напряжение проходит через область, в которой оба транзистора проводят ток. Этот ток создает помехи для напряжения питания инвертора, соответствующие падению напряжения на сопротивлении источника (в этом моделировании используется 2 Ом, примерно столько можно ожидать от внутреннего сопротивления батареи 9 вольт).
Пульсации напряжения питания
Верно, что величина этих пульсаций будет очень мала, но помните, что интегральная микросхема может содержать сотни или тысячи или миллионы инверторов. Без надлежащей развязки кумулятивный эффект всех этих переходных токов привел бы к всерьез шумному (если к не катастрофически неустойчивому) источнику напряжения. Эксперименты, выполненные инженерами Texas Instruments, показали, что неправильно развязанная линия питания микросхемы, производящей коммутации на частоте 33 МГц, привела к тому, что амплитуда пульсаций достигала бы 2 вольт пик-пик на шине питания 5 вольт!
На следующем графике показано напряжение питания, когда схема симуляции расширяется, составляя теперь 8 инверторов, и включает паразитную индуктивность 1 нГн последовательно с внутренним сопротивлением источника.
Пульсации напряжения питания при восьми инверторах в схеме и паразитной индуктивности 1 нГн последовательно с сопротивлением источника
Величина переходных процессов увеличилась до почти 0,5 мВ, и оба возмущения проявляют некоторое колебательное поведение.
Пульсации напряжения питания при большем масштабе по оси времени
Цифровые схемы, безусловно, имеют особую склонность к снижению качества электропитания, но аналоговые микросхемы также нуждаются в развязке, чтобы компенсировать быстрые переходные процессы на выходе и защитить их от шума источника питания, создаваемого другими устройствами. Например, коэффициент подавления пульсаций напряжения питания операционного усилителя (ОУ) уменьшается по мере того, как шум источника питания увеличивается по частоте; это означает, что операционный усилитель с некорректной развязкой может создавать высокочастотные возмущения на линии питания, которые распространяются на собственный выходной сигнал ОУ.
Решение
Удобно, что такая серьезная проблема может быть эффективно разрешена с помощью простого, широкодоступного компонента. Но почему конденсатор? Простое объяснение заключается в следующем: конденсатор хранит заряд, который может быть подан на микросхемы через очень низкое последовательное сопротивление и очень низкую последовательную индуктивность. Таким образом, переходные токи могут подаваться от блокировочного конденсатора (через минимальные сопротивление и индуктивность). Чтобы лучше понять это, нам нужно рассмотреть некоторые базовые понятия, связанные с тем, как конденсатор влияет на схему.
Во-первых, короткая заметка о терминологии. Компоненты, обсуждаемые в данной статье, регулярно упоминаются и как «блокировочные конденсаторы», и как «конденсаторы развязки». Здесь есть тонкое различие: «развязка» относится к уменьшению степени, в которой одна часть схемы влияет на другую, а «блокирование» относится к обеспечению низкоимпедансного пути, который позволяет шуму «обходить» микросхему на своем пути к узлу земли. Оба термина могут быть правильно использоваться, поскольку блокировочный конденсатор / конденсатор развязки выполняет обе задачи. Однако в этой статье предпочтение отдается термину «блокировочный конденсатор», чтобы избежать путаницы с последовательным конденсатором развязки, используемым для блокирования постоянной составляющей сигнала.
Заряд и разряд
Основной эффект конденсатора заключается в хранении заряда и освобождении заряда таким образом, что он противостоит изменениям напряжения. Если напряжение внезапно уменьшается, конденсатор подает ток со своих заряженных пластин в попытке сохранить предыдущее напряжение. Если напряжение внезапно увеличивается, пластины конденсаторы сохраняют заряд от тока, созданного повышенным напряжением. Следующая симуляция может помочь вам визуализировать этот процесс.
Схема моделирования
Временная диаграмма сглаживания конденсатором изменений напряжения
Обратите внимание, что ток является положительным (т.е. протекает от источника через R1 к C1), когда конденсатор заряжается, и отрицательным (т.е. протекает от C1 через R1 к источнику), когда конденсатор разряжается.
Это фундаментальное поведение заряда и разряда не меняется в зависимости от того, подвергается ли конденсатор воздействию низкочастотных или высокочастотных сигналов. Однако при обсуждении обхода источника питания полезно проанализировать влияние конденсатора двумя разными способами: один для низкочастотных случаев и один для высокочастотных случаев. В контексте низких частот или постоянного тока блокировочный конденсатор противостоит изменениям на линии напряжения путем заряда и разряда. Конденсатор функционирует как низкоомная батарея, которая может обеспечивать небольшую величину переходного тока. В контексте высоких частот конденсатор представляет собой низкоомный путь к земле, который защищает микросхему от высокочастотного шума на линии питания.
Стандартный подход
Приведенный выше анализ помогает понять классическую схему блокировки: конденсатор емкостью 10 мкФ находится в двух-пяти сантиметрах от микросхемы, а керамический конденсатор 0,1 мкФ находится как можно ближе к питающему выводу микросхемы.
Классическая схема блокировки пульсаций напряжения питания
Больший конденсатор сглаживает низкочастотные колебания напряжения питания, а меньший конденсатор более эффективно фильтрует высокочастотный шум на линии питания.
Если мы включим эти блокировочные конденсаторы в схему моделирования с 8-ю инверторами, рассмотренную выше, звон будет устранен, а величина возмущений напряжения будет уменьшена с 1 мВ до 20 мкВ.
Временная диаграмма напряжения питания после добавления блокировочных конденсаторов
Идеал и реальность
На этом этапе вам может стать интересно, зачем нам нужен конденсатор 0,1 мкФ в дополнение к конденсатору 10 мкФ. В чем разница между 10 мкФ и 10,1 мкФ? В этом месте обсуждение блокировочных конденсаторов усложняется. Эффективность конкретной схемы блокировки тесно связана с двумя неидеальными характеристиками выбранных конденсаторов: эквивалентное последовательное сопротивление (ESR) и эквивалентная последовательная индуктивность (ESL). В рассмотренном моделировании параллельные конденсаторы 10 мкФ и 0,1 мкФ являются идеальными и дают в результате не более чем идеальный конденсатор 10,1 мкФ. Чтобы сделать симуляцию более близкой к реальности, нам нужно включить обоснованные значения ESR и ESL. После этой модификации мы получим следующее.
Результаты моделирования после включения ESR и ESL конденсаторов
Несмотря на то, что это по-прежнему лучше, чем без использования блокировочных конденсаторов, эти результаты значительно хуже, чем мы видели с идеальными конденсаторами.
Эта простая симуляция не может учесть всех паразитных импедансов и других скрытых влияний, присутствующих в реальных микросхемах на реальных печатных платах (особенно те, что включают высокочастотные цифровые сигналы). Дело в том, чтобы продемонстрировать здесь, что проектирование цепи блокировки предполагает тщательное рассмотрение ESR и ESL конденсатора. Не менее важными являются и правильное размещение компонентов, и методы компоновки печатной платы. Все эти подробности мы рассмотрим в следующей статье.
Конденсатор: что это такое и для чего он нужен
Конденсатор – это устройство, способное накапливать электрический заряд.
Такую же функцию выполняет и аккумуляторная батарея, но в отличие от неё конденсатор может моментально отдать весь накопленный заряд.
Количество заряда, которое способен накопить конденсатор, называют «емкостью». Эта величина измеряется в фарадах.
Содержание статьи
Принцип работы конденсаторов
При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.
В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.
Устройство конденсаторов
Конструкции современных конденсаторов отличаются разнообразием, но можно выделить несколько типичных вариантов:
Пакетная конструкция
Используется в стеклоэмалевых, керамических и стеклокерамических конденсаторах. Пакеты образованы чередующимися слоями обкладок и диэлектрика. Обкладки могут изготавливаться из фольги, а могут представлять собой слои на диэлектрических пластинах – напыленный или нанесенный вжиганием.
Каждый пакетный конденсатор имеет верхнюю и нижнюю обкладки, имеющие контакты с торцов пакета. Выводы изготавливаются из проволоки или ленточных полосок. Пакет опрессовывается, герметизируется, покрывается защитной эмалью.
Трубчатая конструкция
Такую конструкцию могут иметь высокочастотные конденсаторы. Они представляют собой керамическую трубку с толщиной стенки 0,25 мм. На ее наружную и внутреннюю стороны способом вжигания наносится серебряный проводящий слой. Снаружи деталь обрабатывается изоляционным веществом. Внутреннюю обкладку выводят на наружный слой для присоединения к ней гибкого вывода.
Дисковая конструкция
Эта конструкция, как и трубчатая, применяется при изготовлении высокочастотных конденсаторов.
Диэлектриком в дисковых конденсаторах является керамический диск. На него вжигают серебряные обкладки, к которым подсоединены гибкие выводы.
Литая секционированная конструкция
Применяется в монолитных многослойных керамических конденсаторах, используемых в современной аппаратуре, в том числе с интегральными микросхемами. Деталь, имеющая 2 паза, изготавливается литьем керамики. Пазы заполняют серебряной пастой, которую закрепляют методом вживания. К серебряным вставкам припаивают гибкие выводы.
Рулонная конструкция
Характерна для бумажных пленочных низкочастотных конденсаторов с большой емкостью. Бумажная лента и металлическая фольга сворачиваются в рулон. В металлобумажных конденсаторах на бумажную ленту наносят металлический слой толщиной до 1 мкм.
Где используются конденсаторы
Конденсаторы применяются практически во всех современных устройствах: сабвуферах, электродвигателях, автомобилях, насосах, электроинструменте, кондиционерах, холодильниках, мобильных телефонах и т.п.
В зависимости от выполняемых функций их разделяют на общего назначения и узкоспециальные.
К конденсаторам общего назначения относятся низковольтные накопители, которые используются в большинстве видов электроаппаратуры.
К узкоспециализированным относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические ипусковые конденсаторы.
Поведение конденсатора в цепях постоянного и переменного тока
В цепях постоянного тока заряженный конденсатор образует разрыв, мешающий протеканию тока. Если напряжение приложить к обкладкам разряженной детали, то ток потечет. При этом конденсатор будет заряжаться, сила тока падать, напряжение на обкладках повышаться. При достижении равенства напряжения на обкладках и источника электропитания течение тока прекращается.
При постоянном напряжении конденсатор удерживает заряд при включенном питании. После выключения заряд сбрасывается через нагрузки, присутствующие в цепи.
Переменный ток заряженный конденсатор тоже не пропускает. Но за один период синусоиды дважды происходит зарядка и разрядка накопителя, поэтому ток получает возможность протекать через конденсаторв периодего разрядки.
Виды и классификация конденсаторов
Конденсаторы различных типов приспособлены к разным условиям работы, направлены на выполнение определенных задач и обладают различными побочными эффектами.
Основной признак, по которому классифицируют конденсатор, – это вид диэлектрика. Именно диэлектрический материал определяет многие характеристики конденсатора.
Электролитические конденсаторы
В электролитических конденсаторах анодом служит металлическая пластина, диэлектриком – оксидная пленка, а катодом – твердый, жидкий или гелеобразный электролит. Наличие гелеобразного электролита делает устройство полярным, то есть ток через него может протекать только в одном направлении. Представители этого семейства – алюминиевые и танталовые конденсаторы.
Алюминиевые электролитические конденсаторы имеют емкость от 0,1 до нескольких тысяч мкФ. Обычно они применяются на звуковых частотах. Электрохимическая ячейка плотно упакована, что обеспечивает большую эффективную индуктивность, которая не позволяет использовать алюминиевые накопители на сверхвысоких частотах.
В танталовых конденсаторах катод изготавливается из диоксида марганца. Сочетание значительной площади поверхности анода и диэлектрических характеристик оксида тантала обеспечивает высокую удельную емкость (емкость в единице объема или массы диэлектрика). Это значит, что танталовые конденсаторы гораздо компактнее алюминиевых такой же емкости.
У танталовых конденсаторов есть свои недостатки. Устройства ранних поколений грешат отказами, возможны возгорания. Они могут произойти при подаче слишком высокого пускового тока, который меняет структурное состояние диэлектрика. Дело в том, что оксид тантала в аморфном состоянии является хорошим диэлектриком. При подаче большого пускового тока оксид тантала из аморфного состояния переходит в кристаллическое и превращается в проводник. Кристаллический оксид тантала еще больше увеличивает силу тока, что и приводит к возгоранию. Современные танталовые конденсаторы производятся по передовым технологиям и практически не дают отказов, не вздуваются, не возгораются.
Пленочные и металлопленочные конденсаторы
Пленочные конденсаторы имеют диэлектрический слой из полимерной пленки, расположенный между слоями металлофольги.
Такие устройства имеют небольшую емкость (от 100 пФ до нескольких мкФ), но могут работать при высоких напряжениях – до 1000 В.
Существует целое семейство пленочных конденсаторов, но для всех видов характерны небольшие емкость и индуктивность. Благодаря малой индуктивности, эти приборы используются в высокочастотных схемах.
Основные различия между конденсаторами с разными типами пленок:
Керамические конденсаторы
В керамических конденсаторах в качестве диэлектрика используются керамические пластины.
Керамические конденсаторы отличаются небольшой емкостью – от одного пФ до нескольких десятков мкФ.
Керамика имеет пьезоэлектрический эффект (способность диэлектрика поляризоваться под воздействием механических усилий), поэтому некоторые виды этих конденсаторов обладают микрофонным эффектом. Это нежелательное явление, при котором часть электроцепи воспринимает вибрации, как микрофон, что становится причиной помех.
Бумажные и металлобумажные конденсаторы
В качестве диэлектрика в этих конденсаторах используется бумага, часто промасленная. Устройства с промасленной бумагой отличаются большими размерами. Модели с непромасленной бумагой более компактны, но они имеют существенный недостаток – увеличивают энергопотери под воздействием влаги даже в герметичной упаковке. В последнее время эти детали используются редко.
Основные параметры конденсаторов
Емкость
Этот показатель характеризует способность конденсатора накапливать электрический заряд. Емкость тем больше, чем больше площадь проводниковых обкладок и чем меньше толщина диэлектрического слоя. Также эта характеристика зависит от материала диэлектрика. На приборе указывается номинальная емкость. Реальная емкость, в зависимости от эксплуатационных условий, может отличаться от номинальной в значительных пределах. Стандартные варианты номинальной емкости – от единиц пикофарад до нескольких тысяч микрофарад. Некоторые модели могут иметь емкость в несколько десятков фарад.
Классические конденсаторы имеют положительную емкость, то есть чем больше приложенное напряжение, тем больше накопленный заряд. Но сегодня в стадии разработки находятся устройства с уникальными свойствами, которые ученые называют «антиконденсаторами». Они обладают отрицательной емкостью, то есть с ростом напряжения их заряд уменьшается, и наоборот. Внедрение таких антиконденсаторов в электронную промышленность позволит ускорить работу компьютеров и снизить риск их перегрева.
Что будет, если поставить накопитель большей/меньшей емкости, по сравнению с требуемой? Если речь идет о сглаживании пульсаций напряжения в блоках питания, то установка конденсатора с емкостью, превышающей нужную величину (в разумных пределах – до 90% от номинала), в большинстве случаев улучшает ситуацию. Монтаж конденсатора с меньшей емкостью может ухудшить работу схемы. В других случаях возможность установки детали с параметрами, отличающимися от заданных, определяют конкретно для каждого случая.
Удельная емкость
Отношение номинальной емкости к объему (или массе) диэлектрика. Чем тоньше диэлектрический слой, тем выше удельная емкость, но тем меньше его напряжение пробоя.
Плотность энергии
Это понятие относится к электролитическим конденсаторам. Максимальная плотность характерна для больших конденсаторов, в которых масса корпуса значительно ниже, чем масса обкладок и электролита.
Номинальное напряжение
Его значение отражается на корпусе и характеризует напряжение, при котором конденсатор работает в течение срока службы с колебанием параметров в заданных пределах. Эксплуатационное напряжение не должно превышать номинальное значение. Для многих конденсаторов с повышением температуры номинальное напряжение снижается.
Полярность
К полярным относятся электролитические конденсаторы, имеющие положительный и отрицательный заряды. На устройствах отечественного производства обычно ставился знак «+» у положительного электрода. На импортных приборах обозначается отрицательный электрод, возле которого стоит знак «-». Такие конденсаторы могут выполнять свои функции только при корректном подключении полярности напряжения. Этот факт объясняется химическими особенностями реакции электролита с диэлектриком.
К группе неполярных конденсаторов относится большинство накопителей заряда. Эти детали обеспечивают корректную работу при любом порядке подключения выводов в цепь.
Паразитные параметры конденсаторов
Конденсаторы, помимо основных характеристик, имеют так называемые «паразитные параметры», которые искажают рабочие свойства колебательного контура. Их необходимо учитывать при проектировании схемы.
К таким параметрам относятся собственное сопротивление и индуктивность, которые разделяются на следующие составляющие:
К паразитным параметрам также относится Vloss – незначительная величина, выражаемая в процентах, которая показывает, насколько падает напряжение сразу после прекращения зарядки конденсатора.
Обозначение конденсаторов на схеме
В конденсаторах переменной емкости параллельные черточки перечеркиваются диагональной чертой со стрелкой. Подстроечные модели обозначаются двумя параллельными линиями, перечеркнутыми диагональной чертой с черточкой на конце. На обозначении полярных конденсаторов указывается положительно заряженная обкладка.
Обозначение по ГОСТ 2.728-74 | Описание |
| Конденсатор постоянной ёмкости |
| Поляризованный (полярный) конденсатор |
| Подстроечный конденсатор переменной ёмкости |
| Варикап |
Особенности соединения нескольких конденсаторов в цепи
Соединение нескольких конденсаторов между собой может быть последовательным или параллельным.
Последовательное
Последовательное соединение позволяет подавать на обкладки большее напряжение, чем на отдельно стоящую деталь. Напряжение распределяется в зависимости от емкости каждого накопителя. Если емкости деталей равны, то напряжение распределяется поровну.
Получаемая емкость в такой цепи находится по формуле:
Если провести вычисления, то станет понятно, что увеличение напряжения в цепи достигается существенным падением емкости. Например, если в цепь подсоединить последовательно два конденсатора емкостью 10 мкФ, то общая емкость будет равна всего 5 мкФ.
Параллельное
Это наиболее распространенный на практике способ, позволяющий увеличить общую емкость в схеме. Параллельное соединение позволяет создать один большой конденсатор с суммарной площадью проводящих пластин. Общая емкость системы представляет собой сумму емкостей соединенных деталей.
Напряжение на всех элементах будет одинаковым.
Маркировка конденсаторов
В маркировке конденсатора, независимо от его типа, присутствуют два обязательных параметра – емкость и номинальное напряжение. Наиболее распространена цифровая маркировка, указывающая величину сопротивления. В ней используется три или четыре цифры.
Кратко суть трехфциферной маркировки: первые две цифры, находящиеся слева, указывают значение емкости в пикофарадах. Самая правая цифра показывает, сколько нулей надо прибавить к стоящим слева цифрам. Результат получается в пикофарадах. Пример: 154 = 15х104 пФ. На конденсаторах зарубежного производства пФ обозначаются как mmf.
В кодовом обозначении с четырьмя цифрами емкость в пикофарадах обозначают первые три цифры, а четвертая указывает на количество нулей, которые требуется добавить. Например: 2353=235х103 пФ.
Для обозначения емкости также может применяться буквенно-цифровая маркировка, содержащая букву R, которая указывает место установки десятичной запятой. Например, 0R8=0,8 пФ.
На корпусе значение напряжения указывается числом, после которого ставятся буквы: V, WV (что означает «рабочее напряжение»). Если указание на допустимое напряжение отсутствует, то конденсатор может использоваться только в низковольтных цепях.
Помимо емкости и напряжения, на корпусе могут указываться и другие характеристики детали:
Как проверить работоспособность конденсатора
Для проверки конденсатора на работоспособность используют мультиметр. Прежде чем проверить накопитель, необходимо определить, какой именно прибор находится в схеме – полярный (электролитический) или неполярный.
Проверка полярного конденсатора
При проверке полярного конденсатора необходимо соблюдать правильную полярность подключения щупов: плюсовой должен быть прижат к плюсовой ножке, минусовой – к минусу. Если вы перепутаете полярность, конденсатор выйдет из строя.
После выпайки детали ее кладут на свободное пространство. Мультиметр включают в режим измерения сопротивления («прозвонки»).
Щупами дотрагиваются до выводов прибора с соблюдением полярности. Правильная ситуация, когда на дисплее появляется первое значение, которое начинает постепенно расти. Максимальное значение, которое должно быть достигнуто для исправного устройства, – 1. Если вы только прикоснулись щупами к выводам, а на экране появилась сразу цифра 1, значит, прибор неисправен. Появление на экране «0» означает, что внутри детали произошло короткое замыкание.
Проверка неполярного конденсатора
В этом случае проверка предельно простая. Диапазон измерений выставляют на отметку 2 МОм. Щупы присоединяют к выводам конденсатора в любом порядке. Полученное значение должно превышать двойку. Если на дисплее высвечивается значение менее 2 МОм, то деталь неисправна.
Как зарядить и разрядить конденсатор
Для зарядки накопителя его подсоединяют к источнику постоянного тока. Зарядка прекращается, когда напряжение источника питания сравнивается по величине с напряжением на обкладках.
Разрядка конденсатора может понадобиться для безопасной разборки бытовых приборов и электронных устройств. Накопители электронных устройств разряжают с помощью обычной диэлектрической отвертки. Для разрядки крупных накопителей, которые устанавливаются в бытовых приборах, необходимо собрать специальное разрядное устройство.