конденсатор помехоподавляющий для чего
Конденсатор помехоподавляющий для чего
Наша задача сделать так, чтобы помехам не «захотелось» залазить в «нежные места» наших схем, но дать току помех течь туда, куда он «хотел» течь (в нейтраль, к примеру). С другой стороны, можно не доводить сеть до плачевного состояния, не выпуская помехи за пределы устройства.
Для того, чтобы уменьшить помехи, применяют фильтры. Тип фильтра и даже его расположение зависит от конкретного случая. К примеру, если помехи создаются одним источником (двигателем, например), то лучше всего поместить фильтр поближе к этому источнику – замкнуть ток помехи (как на рисунке выше).
Если помехи создаются распределенной схемой в металлическом корпусе (компьютерный блок питания), то фильтр лучше поместить как можно ближе к сетевому шнуру – замкнуть ток помехи внутри корпуса и соединить корпус с самым “чистым” местом схемы, чтобы он сам не излучал.
На рисунке – типичная схема фильтра компьютерного блока питания. Красным показан путь излучаемой помехи, а зеленым – помехи, передающейся по проводам.
Помеха имеет две составляющих – синфазную и противофазную.
Противофазная составляющая помехи — это напряжение помехи между фазой и нейтралью. Для ее подавления используются конденсаторы типа X. Само название X происходит от английского “across-the-line”, буква X похожа на крест (“cross”). На рисунке выше, это конденсатор – C1.
К этим конденсаторам предъявляются такие требования – они должны выдерживать максимально допустимые в сети всплески, не загораться при выходе из строя и не поддерживать горение.
Сейчас используются два основных подкласса X-конденсаторов – X1 и X2.
Емкость X конденсаторов варьируется от 0.1мкФ до 1мкФ. Какую емкость нужно выбрать для данного конкретного прибора можно выяснить только с осциллографом.
Синфазная составляющая помехи — это напряжение помехи между обоими сетевыми проводами и корпусом устройства. Понять, что это такое и зачем нужно немного сложнее.
Рассмотрим типичный импульсный источник питания. Между первичной и вторичной обмоткой трансформатора T1 всегда есть паразитная емкость (нарисована зелененьким). Представим, что конденсатора C7 пока нет. Высокочастотные пульсации беспрепятственно проникают со стока транзистора (самое шумное место схемы!) на вторичную обмотку через зелененькую емкость. Таким образом, на всей выходной части блока питания присутствуют пульсации (с частотой блока питания) относительно заземления и обоих сетевых проводов. Напряжение эти пульсаций может доходить до тысяч вольт. Наш мега-чувствительный прибор будет излучать эти пульсации в эфир, а излучать помехи – это тоже самое, что ловить помехи только с обратным знаком. Прибору будет плохо.
Теперь добавим конденсатор C7. Ток помехи, который просочился через зеленый конденсатор теперь может вернуться туда, откуда взялся по более короткому и менее сложному пути, чем в предыдущем случае и в наш мега-чувствительный прибор ему больше течь не хочется!
Конденсаторы Y – типа делятся на 2 основных класса
Рекомендую также почитать документ
CAPACITORS FOR RFI SUPPRESSION OF THE AC LINE: BASIC FACTS
Конденсаторы К73-28-1: гасящие, фильтрующие, помехоподавляющие.
Анонс: К73-28-1 – конденсаторы гасящие индустриальные шумы, фильтрующие токи высших гармоник, помехоподавляющие. Помехоподавляющие конденсаторы и электромагнитные помехи в нормативно-правовой базе России. Конструктивные и технические особенности фильтрующих, гасящих, помехоподавляющих конденсаторов К73-28-1.
Конденсаторы К73-28-1 для подавления помех и снижения уровня индустриального шума.
Конденсаторы К73-28-1 – проходные коаксиальные пленочные металлизированные помехоподавляющие, фильтрующие конденсаторы группы 73 по диэлектрику (ГОСТ Р 57440-2017) класса Х подкласса Х2 по ГОСТ Р МЭК 60384-14-2004 (см. ниже) с диэлектриком из термопласта полиэтилентерефталата (Polyethylenterephthalat, РЕТ) и способностью к самовосстановлению электрических свойств в случае локального пробоя диэлектрика (self-healing metallized dielectric capacitor в терминологии ГОСТ IEC 61071-2014 и ГОСТ Р МЭК 60384-1-2003).
К73-28-1 может использоваться, как шунтирующий конденсатор (by-pass capacitor) для отведения токов радиочастотных помех, в виде RC-сборки, как конденсатор фильтров, в том числе помехоподавляющего индуктивно-емкостного фильтра типа LC, устанавливаться во вводно-распределительные устройства (ВРУ), шкафы управления, распределительные пункты, вводные устройства питания лифтов и т.д. для подавления электромагнитных помех, а также снижения уровня индустриального шума (man-made noise – электромагнитные помехи от технических средств по ГОСТ Р 50397-2011) до нормируемых значений, регламентируемых ГОСТ 33073-2014 и ГОСТ Р 51317.2.4-2000.
Помехоподавляющие конденсаторы и электромагнитные помехи в нормативно-правовой базе России.
Электромагнитные помехи (electromagnetic disturbance – любое электромагнитное явление, которое может ухудшить качество функционирования технического средства по ГОСТ Р 50397-2011 в силовых сетях электроснабжения могут вызываться природными или техническими причинами, поскольку силовая сеть служит, как источником электромагнитных помех за счет генерации и электромагнитной эмиссии возмущений от подключаемой/отключаемой нагрузки и/или электротехнических, электронных компонентов, так и приемником, работая одновременно как среда передачи энергии от распределительной сети и как приемная антенна. Причем индустриальный шум оказывает наиболее существенное влияние на электромагнитную обстановку в сети/сегменте сети и фор/pмируется электромагнитными возмущениями, создаваемыми при включении/выключении (или эксплуатации в повторно-кратковременных режимах) мощной нагрузки:
Электромагнитные помехи в силовой сети вызывают колебания напряжения, тока, вплоть до срабатывания аварийных систем защиты и выхода нагрузки из строя, пульсацию тока, появление гармонических составляющих тока/напряжения высших порядков, несимметрии напряжения/тока, фликера (мерцания) напряжения и т.д., что существенно влияет на качество поставляемой и потребляемой электроэнергии и, безусловно, на функциональность приборов, устройств, оборудования, активных и пассивных элементов сети.
В свою очередь ГОСТ Р 51317.2.4-2000 (МЭК 61000-2-4-94) в отношении электроснабжения объектов промышленности регламентирует 3 класса электромагнитной обстановки и определяет допустимые уровни электромагнитной совместимости для колебаний, напряжения, несимметрии, отклонений напряжения, изменений частоты и искажений синусоидальности напряжения, а также напряжений нечетных, четных гармонических составляющих и напряжений интергармоник.
Помехоподавляющие конденсаторы.
Конденсаторы для подавления помех (electromagnetic interference suppression capacitor) и сборки на базе конденсаторов и резисторов для сетей низкого (до 1000 В) и среднего (до 35 кВ) напряжения регламентирует ГОСТ IEC 60384-14-2015, где определены:
Пленка из полиэтилентерефталата была выбрана для диэлектрика К73-28-1 не случайно:
Конденсаторы К73-28-1 и их современные пленочные аналоги К73-27-2 НЗК, К73-28-1-М ООО «Неоконд» и K73-56 ЗАО «ЭЛКОД».
В качестве «аналогов» К73-28-1 ООО «Северо-Задонский конденсаторный завод» на электротехническом рынке предлагаются К73-27-2 НЗК, К73-28-1-М ООО «Неоконд», K73-56 ЗАО «ЭЛКОД», однако следует учитывать:
ООО «Неоконд» для соединений в корпусе К73-28-1-М использует не точечную сварку, а пайку, что значительно ухудшает электрические и эксплуатационные характеристики.
Важно: Среди отечественных производителей конденсаторов ООО «Неоконд» выделяется не только некачественной продукцией, но и рядом заявлений на фоле научно-технического нонсенса, свидетельствующих или о критически низкой профильной квалификации сотрудников и менеджмента, или о намеренной маркетинговой инсинуации для продвижения своего продукта.
Так, одним из основных «преимуществ» своих К73-28-1-М ООО «Неоконд» заявляет пайку при сборке корпуса благодаря которой «полностью отсутствует переходное сопротивление», что nonsense в аспектах теории электропроводности и технологий соединения металлов. В действительности при точечной сварке соединение частей корпуса происходит за счет межатомных связей между однородным металлом, а значит ток проходит через буквально гомогенный материал, т.е. соединение имеет высокую прочность и переходное сопротивление сравнимо с сопротивлением свариваемых материалов (небольшая разница обусловлена деформацией металла при сварке).
Дополнительными негативами решений К73-28-1-М ООО «Неоконд» можно признать: практическую невозможность при пайке обеспечить перпендикулярность поверхности фланца относительно боковой поверхности корпуса, а это снижает конструктивную надежность и технологичность конденсаторов; «блестящее» покрытие корпуса с малой шероховатостью, что уменьшает адгезию заливочного компаунда и, соответственно, повышает риски разгерметизации.
ЗАО «ЭЛКОД» в K73-56 для изоляции конденсаторных элементов применяет ленту, а не эпоксидный компаунд, что существенно повышает, как риски пробоя, так и взрыво-, пожароопасность конденсаторов;
К73-27-2 НЗК даже не фольгово-металлизированные, а морально устаревшие фольговые конденсаторы (по факту группа не 73, а 74) и не выдерживают сравнения с К73-28-1 ООО «СКЗ» по результатам осмотра и приемо-сдаточных испытаний.
0,47мкФ 70А в количестве 5шт. (изготовитель «НЗК», дата изготовления 07.2017) и конденсаторов К73-28-1 500В-/220
0,47мкФ 70А в количестве 5шт. (изготовитель «НЗК», дата изготовления 07.2017) и конденсаторов К73-28-1 500В-/220
При вскрытии конденсаторов производства «НЗК» обнаружено применение кабельной непропитанной бумаги при намотке секций в качестве вкладыша на активных витках секций (образец №2). Конденсатор К73-28-1- пленочный и применение в качестве диэлектрика при намотке секций других материалов кроме конденсаторной пленки недопустимо. Именно по этой причине электрические параметры конденсаторов производства «НЗК» нестабильны и значительно уступают изделиям «СКЗ».
При намотке секций К73-28-1 производства ООО «СКЗ» используется изоляционная втулка из армлена и вкладыш из пленки ПЭТ-КЭ.
Дополнительно к низкому качеству изготовления конденсаторов К73-28-1 производства «НЗК» следует отнести следующее:
С целью подтверждения соответствия конденсаторов К73-28-1 производства ООО «СКЗ» требованиям ГОСТ IEC 60384-14-2015 дополнительно проведены и получены положительные результаты испытаний:
О помехах и не только…X- и Y-конденсаторы
Проблема электромагнитной совместимости и электромагнитных помех становится с каждым годом актуальнее. Связано это в первую очередь с увеличением числа потребителей и изменением схемотехники источников питания. Причем происходит как количественный рост (увеличение уровня помехи), так и качественный (меняется ее спектр). Помехи, как физическое явление присутствовали в электрических сетях всегда. Если раньше основным источником были коллекторные электродвигатели, с неизбежным искрообразованием на щетках, то сегодня – это импульсные источники питания с характерными для них ключевыми каскадами.
Как известно, помехи возникающие при работе устройства бывают двух видов: дифференциальные – когда ток помехи протекает в питающих проводах в разных направлениях и синфазные, когда ток помехи протекает в одну сторону, то есть дифференциальная помеха – это помеха между двумя проводами питания, а синфазная – между проводами питания и землей. Чтобы снизить влияние на электрическую сеть, между источником и потребителем устанавливается фильтр, типовая схема которого показана на рисунке слева.
Остановимся подробнее на особенностях этих конденсаторов и попытаемся разобраться в том, зачем они нужны и чем отличаются от «просто конденсаторов».
Начнем с дифференциальной помехи.
К конденсаторам данного класса предъявляются повышенные требования – они должны выдерживать максимально допустимые в сети электропитания всплески, не загораться при выходе из строя и не поддерживать горение.
Сейчас используются два основных подкласса X-конденсаторов – X1 и X2:
Основные свойства конденсаторов типа Х
Величина ёмкости X-конденсаторов варьируется от 0.1мкФ до 1мкФ. Для каждого конкретного случая она рассчитывается в зависимости от потребляемой мощности нагрузки и уровня помех в линии. Как правило, противофазная составляющая комплексной помехи — это напряжение помехи между фазой и нейтралью.
В качестве примера появления синфазной помехи рассмотрим структурную схему AC/DC преобразователя.
Все гальванически развязанные AC/DC преобразователи напряжения имеют в своём составе трансформатор. Ему присущ такой существенный недостаток, как паразитная межобмоточная ёмкость (С пар ). Так как силовой ключ преобразователя напряжения гальванически связан с входным напряжением, а частота преобразования составляет порядка нескольких десятков килогерц, то величина сопротивления паразитной ёмкости трансформатора на этой частоте мала и будет являться причиной появления синфазной помехи на выходе, на обоих проводах сразу. В некоторых случаях напряжение помехи может достичь опасных для человека величин. Ток синфазной помехи обязательно отводится в провод заземления.
Обратим внимание на то, что в данном случае конденсаторы C Y связывают один из проводов питающей сети с выходом преобразователя. Это накладывает дополнительные требования к конденсаторам по его надёжности. Конденсаторы класса Y предназначены для работы в тех местах, где выход их из строя угрожает безопасности людей.
Конденсаторы класса Y – типа делятся на 2 основных подкласса:
Основные свойства конденсаторов типа Y
На сегодняшний день в группе компаний «Промэлектроника» конденсаторы классов X и Y широко представлены продукцией таких ведущих фирм, как Epcos и Vishay, Murata.
Конденсатор помехоподавляющий
Помехоподавляющий конденсатор который устанавливается в систему зажигания (подключен к катушкам зажигания — см. эл.схему в конце записи) и должен гасить помехи на прием радио от работы высоковольтной части зажигания в моей машине был поломан еще при покупке — просто отломано ушко (см. фото). Магнитола у меня хорошая, проверенная на прежней машине а помехи при приеме радиоволн присутствовали. Поетому давно хотел найти замену этому конденсатору но с наскока по быстрому сделать это не получалось. Вот здесь рекомендуют взять просто жигулевский с генератора. Но мне этот вариант не понравился.
Было свободное временя и я занялся поисками. Оригинальный номер RENAULT по каталогу Сафрана 7700676914, в реале 7700876108 был установлен (и еще кучка 7700639987, 7701072086, 7700639987, 7701072086, 7700841334). Большинство из них в продаже уже нету а на некоторые ценники висят по 100$. Долго рывшись в гугле и на D2 всетаки нашел подходящий аналог. Купил самый дешевый конденсатор который нашел — KRAUF AZB0407 за 78 грн номиналом 2,2 мкФ, 100 В. Номинал по емкости полностью совпадает с оригиналом. Данный конденсатор является аналогом дорогого BOSCH 0290800036 и HC CARGO 150407. Посмотреть информацию по последнему а также другие аналоги (разница только в длине провода и/или разьеме подключения) можно на официальном сайте HC CARGO в разделе Radio Accessories (ссылка кликабельна). Интересно что с завода оригинальный конденсатор подключен без разьема — т.е. встроен в проводку. А на замену продается как и остальные с разьемом «мама» или другим (см. последнее фото).
Установка не сложная.
Отрезал старый конденсатор. На его место присоединил «папу» и одел на него термоусадку. Сам конденсатор прикрутил саморезом с прессшайбой к корпусу.
Вся правда о конденсаторах: волшебные свойства загадочных баночек
Было ли лучшее время для энтузиастов и любителей Hi-Fi, чем конец 1970-х и начало 1980-х годов? С одной стороны, так много всего происходило с развитием цифрового аудио, а с другой — наблюдался рост субъективизма. Внезапно проигрыватели и усилители стали оценивать не по уровню детонации, выходной мощности и гармоническим искажениям, а по их звучанию! И можно было даже всерьёз говорить о звучании кабелей. В этой новой атмосфере всё, что когда-то считалось само собой разумеющимся в области Hi-Fi, стало кандидатом на переоценку.
Пристальному изучению подверглось и влияние на звук пассивных электронных компонентов — резисторов, индуктивностей и конденсаторов. В особенности, конденсаторов. Знающие люди начали обсуждать такие явления как эквивалентное последовательное сопротивление (ESR) и диэлектрическое поглощение.
Сегодня мы нечасто слышим об этой теме, но не потому, что проблема была исчерпана. Скорее всего, разработчики нынче уделяют столь же пристальное внимание используемым пассивным компонентам, как и схемам, в которых они применяются, так что общественный фурор несколько стих.
В простейшем виде конденсатор состоит из двух металлических пластин, разделённых воздухом (или, ещё лучше, вакуумом) и схематично изображён на рис. 1. Поскольку между пластинами нет проводящего пути, конденсатор блокирует постоянный ток (например, от батареи). При этом конденсатор, напротив, пропускает сигналы переменного тока — как раз такие как звуковые волны.
Рис. 1. Компоненты, из которых состоит конденсатор — две проводящие пластины, разделённые слоем диэлектрика.
Проверенное решение
Мы нечасто сталкиваемся с воздушными конденсаторами, но если вы заглядывали внутрь старого лампового радиоприемника и видели элемент, отвечающий за настройку, который состоит из чередующихся металлических пластин, это как раз воздушный конденсатор переменной ёмкости. В большинстве конденсаторов, с которыми мы сталкиваемся в аудиотехнике и прочей электронике, в качестве изолирующего материала (диэлектрика), разделяющего пластины, не используется воздух, поскольку он имеет низкую диэлектрическую постоянную (1,0), а это означает, что воздушные конденсаторы большой емкости слишком громоздкие, чтобы быть практичными. По этой причине используются, в основном, твёрдые диэлектрики, с более высокими диэлектрическими свойствами, в том числе из керамики и различных видов пластмасс (например, ПВХ с диэлектрической проницаемостью 4,0). Именно здесь история становится особенно интересной, поскольку для всех этих диэлектриков характерны те или иные компромиссы в плане влияния на звук, в то время как воздух практически идеален.
Простые фильтры
Для начала, узнаем побольше о том, как ведут себя конденсаторы и для чего они используются. Конденсаторы блокируют постоянный ток и пропускают переменный, однако они не пропускают переменный ток с разной частотой одинаково. Это объясняется тем, что конденсаторы обладают реактивным сопротивлением, которое снижается с увеличением частоты (к слову, катушки индуктивности тоже обладают реактивным сопротивлением, которое, наоборот, увеличивается с ростом частоты).
Таким образом, конденсаторы пропускают высокочастотные сигналы легче, чем низкочастотные, что делает их крайне полезными в частотно-селективных цепях (то есть, в фильтрах), а также для устранения нежелательных сигналов (например, гул или шум с шины питания постоянного напряжения).
Простые фильтры верхних и нижних частот показаны на рис.2. В фильтре верхних частот (рис. 2а) последовательно включенный конденсатор подключен к шунтирующему резистору. В фильтре нижних частот (рис. 2b) конденсатор и резистор меняются местами.
Рис. 2. RC-фильтр первого порядка верхних (2a) и нижних (2b) частот.
Итак, конденсаторы зачастую используются для объединения цепей, отделения нежелательного шума в цепях постоянного напряжения и в частотно-селективных цепях (фильтрах). Поскольку конденсаторы накапливают электрический заряд, большие из них также применяются в качестве резервуаров в источниках питания переменного и постоянного тока. На рис. 3 показан типовой источник питания, включающий в себя понижающий трансформатор (он понижает напряжение сети), мостовой выпрямитель (который преобразует переменный ток из трансформатора в импульсный постоянный ток) и пару конденсаторов-резервуаров (сглаживающих пульсации после выпрямления переменного тока).
Рис.3. Принципиальная схема двухполупериодного источника питания, состоящего из понижающего трансформатора, двухполупериодного мостового выпрямителя и двух резервуарных конденсаторов.
Подобные схемы встречаются во многих твердотельных аудиокомпонентах. Аналогичные решения используются и в ламповом оборудовании, но из-за высоких напряжений, требуемых для работы ламп, трансформатор здесь обычно повышает напряжение сети.
Ёмкость резервуарных конденсаторов, используемых в транзисторных усилителях мощности, может достигать 50 000 мкФ и более, тогда как в других случаях в схеме могут использоваться конденсаторы емкостью 1 НФ (одна тысячная микрофарада) или даже меньше. Таким образом, очевидно, что некоторые типы конденсаторов лучше подходят под определённые задачи, чем другие.
Важное уточнение
Как правило, самые большие резервуарные конденсаторы являются электролитическими, ведь они обеспечивают высокую ёмкость в сравнительно небольшом объёме. Такие конденсаторы содержат электролит (жидкость или гель), который химически реагирует с металлической фольгой внутри банки, образуя слой диэлектрика. Подобные электролитические конденсаторы, а также некоторые другие — например, танталовые, называются полярными, а несоблюдение полярности подключения может привести к их выходу из строя.
Другая разновидность — неполярные конденсаторы, которые можно подключать без учёта полярности. Подобные электролиты иногда использовались в пассивных кроссоверах акустических систем, однако такая практика сегодня устарела, поскольку плёночные конденсаторы справляются с этой задачей лучше, хоть и занимают больше места.
Конденсаторы также могут иметь различное расположение выводов — аксиальное (осевое) или радиальное. Преимущество радиальных электролитов заключается в том, что они занимают меньше площади на плате, однако их минус — в том, что они увеличивают её высоту. В больших электролитических конденсаторах обычно отказываются от выводов под пайку — в пользу винтовых клемм.
Что скрывают конденсаторы
Настоящие конденсаторы, как и настоящие политики, ведут себя не идеально, и именно здесь кроется причина их влияния на качество звука. Во-первых, на практике ни один конденсатор не является только ёмкостью — он также имеет индуктивность и сопротивление. На принципиальной схеме конденсатор обычно обозначается одним из символов на рис. 4 (все они визуально отсылают к двум разделенным пластинам), однако в реальности он представляет собой что-то вроде схемы, представленной на рис. 5. Резистор обозначенный на рисунке как ESR (эквивалентное последовательное сопротивление) может быть не постоянным — сопротивление может зависеть от частоты. В случае с электролитическими конденсаторами, ESR обычно уменьшается с частотой.
Рис. 4. Варианты обозначения конденсаторов на схеме
Одним из последствий того, что у конденсаторов есть индуктивность (ESL или эквивалентная последовательная индуктивность на рис. 6), является то, что они, по сути, являются электрически резонансными. Если проанализировать импеданс конденсатора в зависимости от частоты, он не будет продолжать уменьшаться с ростом частоты. На рис. 6 показано, что импеданс достигает минимума (эквивалентного значению ESR) на резонансной частоте, а затем, по мере увеличения частоты, он снова начинает расти из-за ESL.
Рис. 5. Схематичный эквивалент реального конденсатора демонстрирует паразитное сопротивление (ESR) и индуктивность (ESL)
Рис. 6. Паразитная индуктивность приводит к тому, что у конденсаторы имеют электрический резонанс, иногда — в пределах слышимого диапазона частот.
У больших электролитических конденсаторов частоты электрического резонанса обычно находятся в пределах звукового диапазона. У небольших конденсаторов частоты электрического резонанса могут превышать 1 МГц. Для увеличения частоты электрического резонанса для заданной емкости следует уменьшить ESL — последовательную индуктивность.
Для достижения этой цели, при разработке электролитических конденсаторов, где такая проблема стоит наиболее остро, применяются различные методы. Например, в конденсаторах DNM T-Network для снижения индуктивности используются специальные Т-образные соединения из фольги — таким образом, их резонансная частота более чем в два раза выше по сравнению со стандартной конструкцией (от 28 кГц до 75 кГц — в примере, который приводит компания DNM на своём веб-сайте).
ESR оказывает потенциально благотворное влияние на демпфирование электрического резонанса конденсатора, однако, в отличие от индуктивности или ёмкости, сопротивление генерирует тепло в то время, когда через конденсатор проходит ток. В больших ёмкостных конденсаторах, где проходящие через них токи велики, этот эффект внутреннего нагрева ограничивает безопасные условия эксплуатации. Тем не менее, электролитические конденсаторы лучше всего работают именно тёплыми.
Микрофонный эффект
Не секрет, что ламповое оборудование чувствительно к вибрации. Внутри вакуумированной стеклянной оболочки лампы находятся тонкие металлические электроды, расстояние между которыми влияет на работу лампы. Таким образом, если встряхнуть лампу достаточно сильно, это отразится на её электрической мощности — эффект, который называют «микрофонным», поскольку лампа в таком случае ведёт себя подобно микрофону.
Твердотельная электроника меньше подвержена этому эффекту, однако приведём в пример некий крайний случай: разработчики первых систем управления двигателем в гоночных автомобилях вскоре научились не прикреплять электронные блоки к двигателю, либо использовать хорошую изоляцию, иначе вибрации от двигателя могли нарушить её работу. Уровни вибрации, которые испытывает Hi-Fi оборудование при повседневном использовании, гораздо ниже, однако некоторые производители, среди которых, например, Naim Audio, по-прежнему прилагают большие усилия, чтобы свести к минимуму вероятное воздействие микрофонного эффекта.
Способность конденсатора накапливать заряд (его ёмкость) пропорциональна площади пластин и обратно пропорциональна расстоянию между ними, а «пластины» обычно представляют собой тонкую фольгу с тонкими слоями диэлектрика между ними. Это приводит к тому, что конденсаторы подвержены воздействию микрофонного эффекта, поскольку из-за вибрации расстояние между пластинами и, следовательно, значение ёмкости может меняться.
Таким образом, физические свойства материалов, из которых изготовлен конденсатор, могут быть столь же важны, как и электрические параметры. Но что ещё интереснее, вибрация извне не является необходимым условием для того, чтобы конденсаторы страдали от её воздействия, ведь силы, формируемые напряжениями и токами внутри самого конденсатора, также могут вызывать механические резонансы. Из-за этого эффекта можно даже услышать, как некоторые конденсаторы издают звук, когда через них проходит сигнал. В кроссовере акустической системы, где уровни вибраций, напряжения и токи высоки, присутствует «идеальный шторм» факторов, которые делают выбор подходящего конденсатора особенно важной задачей.
Ключевые слова
Проблема микрофонного эффекта и механических резонансов конденсаторов активно обсуждалась на протяжении многих лет, однако исследований по этому вопросу было достаточно мало. Во всяком случае, мало опубликованных исследований. Но те, что существуют, подтверждают мнение, что данный эффект может оказывать заметное влияние качества звучания.
К тому же, в некоторых случаях конденсаторы могут приводить к необычайно высоким уровням гармонических и интермодуляционных искажений. Понимание того, как и почему это происходит, позволяет разработчикам сосредоточить свои усилия на доработке электронной схемы и тщательном выборе электронных компонентов — таким образом, чтобы это принесло наибольшую пользу.