конденсатор в диодном мосту для чего нужен

Как конденсатор сглаживает пульсации переменного тока

Способ получения постоянного тока из переменного синусоидального (идеализированный вид) при использовании одно или двух полупериодного выпрямителя имеет ряд недостатков, о которых мы и поговорим далее.
Главным недостатком такого выпрямителя является пульсирующее напряжение. Избавление от пульсаций напряжения, их сглаживание – необходимое условие для корректной работы многих электрических приборов, особенно это касается радиоаппаратуры, где такой вид напряжения вносит хорошо заметные помехи. Так называемые, сглаживающие фильтры применяют для устранения пульсаций выходного тока и напряжения.

Так же используют различные комбинации выше перечисленных фильтров для достижения необходимого качества напряжения.

Как работает С-фильтр?

Схема С-фильтра (емкостной)

На рисунке выше, к первичной обмотке трансформатора подводиться переменное напряжение U, ко вторичной обмотке подсоединена нагрузка Rн, через которую должен протекать постоянный (выпрямленный) ток. Роль выпрямителя в представленной схеме играет диод, как работает полупроводниковый диод, Вы можете прочесть здесь. Конденсатор С – фильтрующий элемент.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Вид выходных тока и напряжения на С-фильтре

Действия диода во вторичной цепи трансформатора описывает серая, пульсирующая кривая. Если быть точным, диод обрезал отрицательную часть переменного напряжения, он пропускает только положительную волну, а при приложении отрицательного напряжения – запирается. Конденсатор С, как уже говорилось раннее – резервуар энергии. Когда диод открыт и ток протекает через нагрузку, то конденсатор (подсоединен параллельно) заряжается до величины напряжения в цепи. А когда диод закрыт (отрицательная волна синусоиды), благодаря наличию емкости, уровень напряжения не может резко снизиться. Конденсатор постепенно разряжается через нагрузку, таким образом, сглаживая огромные скачки уровня напряжения. Разряжается он до следующей положительной волны, а точнее, когда напряжение на катоде диода превысит напряжение на конденсаторе. И он вновь начнет заряжаться. Такая цикличность действий будет происходить постоянно. Красный цвет линии изображает работу такой смоделированной системы.

Если в качестве выпрямителя применять диодный мост, то выходные ток и напряжения приобретут следующий вид:

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Благодаря тому, что диодный мост работает и при положительном, и при отрицательном напряжении — пульсность увеличилась в два раза.

Обратите внимание на вид тока (синий), из-за наличия конденсатора ток имеет резкий скачок, что в свою очередь не есть хорошо для любого электроприбора. На помощь в сложившейся ситуации приходит катушка индуктивности.

Роль индуктивности в сглаживании

Схема Г-образного фильтра (L+C)

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Разница в применении диодного моста и диода

1. Диодный мост работает постоянно (при положительной и отрицательной волне), что увеличивает пульсность выходного напряжения. Соответственно, для получения одного и того же значения напряжения, конденсатор в мостовой схеме нужен меньшей емкости, так как может себе «позволить» разряжаться быстрее.

2. При применении одного диода, имеет место момент времени, когда диод заперт и напряжение между его катодом и анодом равно двухкратному напряжению цепи (на катоде положительное значение благодаря конденсатору, а на аноде отрицательная полуволна, достигшая пика). По этому при выборе диода для выпрямителя, необходимо учесть, что его импульсное обратное напряжение должно превышать 2 значения рабочего напряжения. При работе диодного моста такого нюанса нет, так как диоды в этой схеме работают попарно при + и – волне.

3. Не нужно забывать про свойства полупроводниковых диодов. Ведь при прохождении p-n перехода существует падение напряжения, которое обязательно необходимо учитывать при подборе сглаживающего фильтра. Здесь выигрывает простой диод над диодным мостом. Потому что у него напряжение снижается лишь на одном элементе, а в мостовой схеме, ток в один момент времени протекает по двум полупроводникам. Этот эффект нагляден на рисунках ниже:

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Влияние малой нагрузки на эффективность сглаживания

Активное сопротивление катушки индуктивности находится по формуле:

Эффективность индуктивного и емкостного фильтров повышается при соблюдении следующих условий:

Вид выпрямленного напряжения при малой нагрузке (рисунок ниже):

— выпрямление диодом;
— мостовая схема.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Расчет конденсаторного фильтра

Напряжение после диодного моста — studvesna73.ru

Очень много вопросов задают по статье как получить из переменного напряжения постоянное. Напомню, что мы получали постоянное напряжение с помощью типичной схемы, которая используется во всей электронике:

Да, та статья получилась чуток сыровата, но суть преобразования переменного тока в постоянный вроде бы объяснил. Но все равно, очень много вопросов идут в личку именно по этой статье. И тут приходится снова начинать писать по полчаса ответ каждому любопытному читателю. Поэтому я решил для всех вас накарябать статейку и помочь разобраться, что есть что.

Источник

Диодный мост схема с конденсатором

Многие электронные приборы, для работы которых применяется переменный ток в 220 вольт, используют в своих схемах диодные мосты. Основной функцией данного устройства являются действия по выпрямлению переменного тока. Это связано с тем, что многие приборы рассчитаны на питание постоянного тока. Поэтому, и возникает постоянная необходимость в выпрямлении. Есть много вариантов подключения подобных устройств. Так, существует диодный мост, схема с конденсатором у которого, отличается от традиционной сборки. Дешевые полупроводниковые диоды позволяют повсеместно применять такие схемы.

Работа диодного моста

Принцип работы диодного моста заключается в следующем. На его вход, обозначенный переменным значком, производится подача переменного тока с изменяющейся полярностью. Частота изменений, как правило, совпадает с частотой в электрической сети. На выходе, где расположены положительный и отрицательный выводы, получается ток исключительно с одной полярностью.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Однако, на выходящем токе будут наблюдаться пульсации с частотой, превышающей частоту переменного тока, подаваемого на вход. Такие пульсации являются нежелательными и препятствуют нормальной работе всей схемы. Для ликвидации таких пульсаций, применяются специальные фильтры. Для самых простых фильтров используются электролитические конденсаторы с большой емкостью. Таким образом, во всех блоках питания устанавливается диодный мост, схема с конденсатором которого позволяет эффективно сглаживать все пульсации выходящего тока.
конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен
Чтобы повысить производительность выпрямляющих устройств, в их конструкции применяется схема диодной сборки. В ее состав входят четыре диода с одинаковыми параметрами, объединенные в одном общем корпусе. Для их соединения используется схема мостового выпрямителя. Такая сборка очень компактная, для всех диодов соблюдается одинаковый тепловой режим. Стоимость общей конструкции значительно ниже, чем у четырех отдельных диодов. Однако, существенным недостатком является необходимость замены всего диодного моста, при выходе из строя хотя-бы одного диода.

Применение диодных мостов

Эти схемы применяются, практически, во всех областях электроники, где для питания используется переменный ток однофазной электрической сети. Данный элемент имеет в своей конструкции блоки питания трансформаторного и импульсного типа. В качестве примера импульсного варианта можно привести блок питания компьютера.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Диодные мосты также используются для устойчивой работы люминесцентных и энергосберегающих ламп. Они устанавливаются в светильники, взамен устаревших дросселей. Диодные приборы с большой мощностью входят в состав конструкции сварочных аппаратов.

Простой конденсаторный выпрямитель

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Классическая схема диодного моста на 12 вольт

Источник

Что такое диодный мост

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Содержание статьи

Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Схема диодного моста из 4 диодов

Что такое диодный мост и из каких элементов он состоит

Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом. Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

Как работает диодный мост: для чайников, просто и коротко

На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Обозначение диодного моста на схеме

Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Работа диодного моста

На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны. Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Для чего нужен диодный мост в генераторе автотехники

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

Видео: принцип работы диодного моста

Источник

Устройство и работа выпрямительного диода. Диодный мост.

18 Июн 2013г | Раздел: Радио для дома

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.
В этой части мы рассмотрим устройство и работу выпрямительных диодов.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.

Общие характеристики выпрямительных диодов.

В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой, средней и большой мощности:

малой мощности рассчитаны для выпрямления прямого тока до 300mA;
средней мощности – от 300mA до 10А;
большой мощности — более 10А.

По типу применяемого материала они делятся на германиевые и кремниевые, но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.

Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.

Технология изготовления и конструкция выпрямительных диодов.

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.

Технология изготовления таких диодов заключается в следующем:
на поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Кристаллы кремния или германия (3) с p-n переходом (4) припаиваются к кристаллодержателю (2), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7) со стеклянным изолятором (6), через который проходит вывод одного из электродов (5).

Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1) с помощью которых они монтируются в схемах.
У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1) значительно мощнее. Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).

Электрические параметры выпрямительных диодов.

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

Iобр – постоянный обратный ток, мкА;
Uпр – постоянное прямое напряжение, В;
Iпр max – максимально допустимый прямой ток, А;
Uобр max – максимально допустимое обратное напряжение, В;
Р max – максимально допустимая мощность, рассеиваемая на диоде;
Рабочая частота, кГц;
Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде.

Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (), а функцию выпрямляющего элемента будет выполнять диод (VD).

При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.

Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Заряжаясь импульсами тока во время положительных полупериодов, конденсатор () во время отрицательных полупериодов разряжается через нагрузку (). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке () будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим.
В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

Диодный мост.

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «» или «

», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

конденсатор в диодном мосту для чего нужен. Смотреть фото конденсатор в диодном мосту для чего нужен. Смотреть картинку конденсатор в диодном мосту для чего нужен. Картинка про конденсатор в диодном мосту для чего нужен. Фото конденсатор в диодном мосту для чего нужен

Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3, нагрузку , диод VD2 и к нижнему выводу вторичной обмотки (см. график а). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.

В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4, нагрузку , диод VD1 и к верхнему выводу вторичной обмотки (см. график б). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.

В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:

1. Удвоилась частота пульсаций выпрямленного тока;
2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;
3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.

А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором, то им уже смело можно запитывать радиолюбительскую конструкцию.

Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.

А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром.

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н., Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
3. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *