консистентные данные что это

Консистентность данных

Консистентность данных

Консистентность данных (англ. data consistency или data validity) — это согласованность данных друг с другом, целостность данных, а также внутренняя непротиворечивость. Множество всех условий, налагаемых на данные определяется моделью (структурой) данных.

Содержание

Условия консистентности данных в ER-модели

Если данные представляют собой связанные отношениями узлы различного типа, в которых хранятся какие-то данные, то в модели данных могут быть оговорены условия: какие именно данные там могут хранится, и узлы каких типов могут быть связаны заданными в модели отношениями (связями) (см. w:en:Entity-relationship model, ER-модель данных).

Например, в базе данных людей, отношение «родитель» направленное от узла X к узлу Y подразумевает, что узел Y связан с X либо отношением «дочь» либо отношением «сын», причём это непосредственно зависит от значения атрибута «пол» узла X. Другим очевидным условием консистентности базы данных людей является требование, чтобы один узел был связан не более, чем с двумя другими узлами отношением «родитель», причём атрибут «пол» у этих узлов должен различаться.

Условия консистентности могут включать в себя указание того, какие значения могут принимать атрибуты узлов, какие отношения могут устанавливаться между узлами, каково минимальное и максимальное число отношений определённого типа, в котором может участвовать один узел, а также другие типы условий.

Консистентность в базах данных

Понятие консистентности впервые появилось в области систем управления базами данных.
Условия целостности данных (integrity constraints) стали записывать в виде правил и ввели триггеры — процедуры, которые вызывались до и после выполнения запроса. До запроса (триггер типа BEFORE) проходила проверка того, что данные имеют состояние, которое позволяет осуществить данный тип запроса. А после выполнения запроса (триггер типа AFTER) проверялось, что состояние базы данных удовлетворяет условим целостности. Если один из триггеров не срабатывал (возвращал НЕУСПЕХ или срабатывал с ошибкой), то транзакция откатывалась (отменялась).

Kонсистентность является важнейшим понятием теории управления данными (data management) и входит в четвёрку ACID (Atomicity, Consistency, Isolation, и Durability) — Атомарность, Консистентность, Замкнутость и Живучесть (стойкость).

Консистентность в теории алгоритмов и структур данных

Консистентность структуры данных в теории алгоритмов имеет важное значение.
Задачи, решаемые алгоритмистами и программистами, в большей части связаны с поиском эффективной структуры данных и реализацией механизмов поддержки её консистентности.

Например, условие консистентности двоичного дерева поиска — это возрастание ключей в узлах дерева слева направо, а именно ключ в корневом узле должен быть меньше ключей узлов правого поддерева и больше ключей узлов левого поддерева. Если в каждом узле дерева поиска хранится также указатель parent на родительский узел, то возникает дополнительное условие консистентности двоичного дерева поиска: в каждом узле X указатель на родительский узел должен указывать на такой узел, в котором ровно один из указателей на детей (left или right) указывает на узел X.

Проблема поддержки консистентности данных

Проблема поддержки консистентности данных остро стоит в задачах управления большими базами данных. Одним из способов избавится от проблем, связанных с поддержкой консистентности, является устранения дублирования информации. Одна и та же информация может быть записана с базе данных в нескольких местах (но, возможно в разном виде) или частично повторяться. Это требует синхронизации кусочков повторяющейся информации друг с другом.

С другой стороны, дублирование информации в различных местах позволяет писать более простые и эффективные алгоритмы поиска данных (алгоритмы выполнения различных запросов). При решении проблемы поддержки консистентности данных необходим разумный баланс между скоростью (сложностью алгоритмов) извлечения данных и скоростью (сложностью алгоритмов) хранения и модификации данных.

Источник

Требования ACID на простом языке

Мне нравятся книги из серии Head First O`Reilly — они рассказывают просто о сложном. И я стараюсь делать также.

Когда речь идёт о базах данных, могут всплыть магические слова «Требования ACID». На собеседовании или в разговоре разработчиков — не суть. В этой статье я расскажу о том, что это такое, как расшифровывается ACID и что означает каждая буква.

Требования ACID — набор требований, которые обеспечивают сохранность ваших данных. Что особенно важно для финансовых операций. Мы же не хотим остаться без денег из-за разрыва соединения или ошибки в ПО, не так ли?

Давайте пройдемся по каждой букве ACID и посмотрим на примерах, чем архив лучше 10 разных файлов. И чем транзакция лучше 10 отдельных запросов.

Atomicity — Атомарность

Атомарность гарантирует, что каждая транзакция будет выполнена полностью или не будет выполнена совсем. Не допускаются промежуточные состояния.

Друг познается в беде, а база данных — в работе с ошибками. О, если бы всё всегда было хорошо и без ошибок! Тогда бы никакие ACID были бы не нужны. Но как только возникает ошибка, атомарность становится очень важна.

Допустим, вы решили отправить маме деньги. Когда вы делаете перевод внутри банка, что происходит:

У вас деньги списались

консистентные данные что это. Смотреть фото консистентные данные что это. Смотреть картинку консистентные данные что это. Картинка про консистентные данные что это. Фото консистентные данные что это

И допустим, что у нас 2 отдельных запроса. А теперь посмотрим, что будет при возникновении ошибок:

1. У вас на балансе нет нужной суммы — система вывела сообщение об ошибке, но катастрофы не произошло, атомарность тут не нужна.

консистентные данные что это. Смотреть фото консистентные данные что это. Смотреть картинку консистентные данные что это. Картинка про консистентные данные что это. Фото консистентные данные что это

2. У мамы заблокирована карточка, истек срок годности — деньги ей не поступили. Запрос отменен. Но минуточку. У вас то они уже списались!

консистентные данные что это. Смотреть фото консистентные данные что это. Смотреть картинку консистентные данные что это. Картинка про консистентные данные что это. Фото консистентные данные что это

Ошибка на первом этапе никаких проблем в себе не таит. А вот ошибка на втором. Приводит к потере денег, что явно недопустимо.

Если мы отправляем отдельные запросы, система не может связать их между собой. Запрос упал с ошибкой? Система его отменяет. Но только его, ведь она не знает о том, что запрос «у меня деньги спиши» связан с упавшим «сюда положи»!

Транзакция же позволяет сгруппировать запросы, то есть фактически показывает базе на взаимосвязи между ними. База сама о связях ничего не знает! Это знаете только вы =)

консистентные данные что это. Смотреть фото консистентные данные что это. Смотреть картинку консистентные данные что это. Картинка про консистентные данные что это. Фото консистентные данные что это

И если падает запрос внутри транзакции, база откатывает всю транзакцию. И приходит в состояние «как было до начала транзакции». Даже если там внутри было 10 запросов, вы можете спать спокойно — сломался один, откатятся все.

Consistency — Согласованность

Транзакция, достигающая своего нормального завершения (EOT — end of transaction, завершение транзакции) и, тем самым, фиксирующая свои результаты, сохраняет согласованность базы данных. Другими словами, каждая успешная транзакция по определению фиксирует только допустимые результаты ​ wikipedia

Это свойство вытекает из предыдущего. Благодаря тому, что транзакция не допускает промежуточных результатов, база остается консистентной. Есть такое определение транзакции: «Упорядоченное множество операций, переводящих базу данных из одного согласованного состояния в другое». То есть до выполнения операции и после база остается консистентной (в переводе на русский — согласованной).

консистентные данные что это. Смотреть фото консистентные данные что это. Смотреть картинку консистентные данные что это. Картинка про консистентные данные что это. Фото консистентные данные что это

Например, пользователь в системе заполняет карточку:

Телефон — отдельно код страны, города и номер

Источник

Консистентность и ACID-гарантии в распределенных системах хранения данных

Распределенные системы используют, когда возникает необходимость в горизонтальном масштабировании, чтобы обеспечить повышенные показатели производительности, которые не способна обеспечить за адекватные деньги вертикально масштабированная система.

Как и переход с однопоточной парадигмы на многопоточную, миграция на распределенную систему требует своего рода погружения и понимания того, как это работает внутри, на что нужно обращать внимание.

Одна из проблем, которая встает перед человеком, который хочет мигрировать проект на распределенную систему или начать на ней проект, — какой продукт выбрать.

Мы, как компания, которая «собаку сьела» в разработке систем такого рода, помогаем нашим клиентам взвешенно принимать такие решения применительно к распределенным системам хранения. Также мы выпускаем серию вебинаров для более широкой аудитории, которые посвящены базовым принципам, рассказанным простым языком, и безотносительно каких-то конкретных продуктовых предпочтений помогают составить карту значимых характеристик, чтобы облегчить выбор.

Эта статья основана на наших материалах по консистентности и ACID-гарантиям в распределенных системах.

Что это такое и зачем это нужно?

«Согласованность данных (иногда консистентность данных, англ. data consistency) — согласованность данных друг с другом, целостность данных, а также внутренняя непротиворечивость.» (Wikipedia)

Согласованность подразумевает, что в любой момент времени приложения могут быть уверены, что работают с корректной, технически актуальной версией данных, и могут расчитывать на нее при принятии решений.

В распределенных системах обеспечивать согласованность становится сложнее и дороже, потому что появляется целый ряд новых вызовов, связанных с сетевым обменом между различными узлами, возможностью отказа отдельных узлов и — зачастую — отсутствием единой памяти, которая может служить для верификации.

Например, если у меня есть система из 4 узлов: A, B, C и D, которая обслуживает банковские транзакции, и узлы C и D отделились от A и B (скажем, из-за сетевых проблем), вполне возможно, я теперь не имею доступа к части транзакций. Как мне действовать в этой ситуации? Разные системы принимают разные подходы.

консистентные данные что это. Смотреть фото консистентные данные что это. Смотреть картинку консистентные данные что это. Картинка про консистентные данные что это. Фото консистентные данные что это

На верхнем уровне есть 2 ключевых направления, которые выражены в CAP-теореме.

«Теорема CAP (известная также как теорема Брюера) — эвристическое утверждение о том, что в любой реализации распределённых вычислений возможно обеспечить не более двух из трёх следующих свойств:

Когда CAP-теорема говорит о консистентности, она подразумевает достаточно строгое определение, включающее линеаризацию записей и чтений, и оговаривает только консистетность при записи отдельных значений. (Martin Kleppman)

CAP-теорема говорит о том, что если мы хотим быть устойчивы к сетевым проблемам, то мы в целом должны выбрать, чем жертвовать: консистентностью или доступностью. Есть также расширенная версия этой теоремы — PACELC (Wikipedia), которая дополнительно рассказывает о том, что даже в отсутствии сетевых проблем мы должны выбирать между скоростью отклика и консистетностью.

И хотя, на первый взгляд выходца из мира классических СУБД, кажется, что выбор очевиден, и консистетность — самое главное, что у нас есть, это далеко не всегда так, что ярко иллюстрирует взрывной рост целого ряда NoSQL СУБД, которые сделали другой выбор и, несмотря на это, получили огромную пользовательскую базу. Apache Cassandra с ее знаменитой eventual consistency является хорошим примером.

Все из-за того, что это выбор, который подразумевает, что мы чем-то жертвуем, и далеко не всегда мы этим жертвовать готовы.

Часто проблема консистентности в распределенных системах решается просто отказом от этой консистентности.

Но нужно и важно понимать, когда отказ от этой консистентности допустим, а когда она является бизнес-критичным требованием.

Например, если я проектирую компонент, который отвечает за хранение пользовательских сессий, здесь мне, скорее всего, консистентность не так важна, да и потеря данных некритична, если она происходит только в проблемных случаях — очень редко. Худшее, что случится, — пользователю нужно будет перелогиниться, и для многих бизнесов это практически никак не повлияет на их финансовые показатели.

Если я делаю аналитику на потоке данных с датчиков, во многих случаях мне совсем некритично потерять часть данных и получить на небольшом промежутке времени пониженную дискретизацию, особенно, если «eventually» данные я все-таки увижу.

Но если я делаю банковскую систему, консистентность денежных проводок критична для моего бизнеса. Если я начислил пеню на кредит клиента из-за того, что просто не увидел в срок внесенный платеж, хотя он был в системе — это очень-очень плохо. Как и если клиент может несколько раз снять все деньги с моей кредитной карты, потому что у меня в момент проведения транзакции возникли сетевые проблемы, и на часть моего кластера информация о снятии не дошла.

Если вы оформляете дорогостоящую покупку в интернет-магазине, вы не хотите, чтобы о вашем заказе забыли, несмотря на рапортующую об успехе веб-страницу.

Но если вы делаете выбор в пользу консистентности, вы жертвуете доступностью. И зачастую это ожидается, скорее всего, вы не раз сталкивались с этим лично.

Лучше, если корзина интернет-магазина скажет «попробуйте позднее, распределенная СУБД недоступна», чем если отрапортует об успехе и забудет заказ. Лучше получить отказ в транзакции из-за недоступности сервисов банка, чем отбивку об успехе и потом разбирательства с банком из-за того, что он забыл, что вы внесли платеж по кредиту.

Наконец, если мы смотрим на расширенную, PACELC теорему, то мы понимаем, что даже в случае штатной работы системы, выбирая консистентность, мы можем жертвовать низкими задержками, получая потенциально более низкий уровень максимальной производительности.

Поэтому, отвечая на вопрос «зачем это нужно?»: это нужно, если для вашей задачи критично иметь актуальные, целостные данные, и альтернатива принесет вам существенные потери, большие, чем временная недоступность сервиса на период инцидента или его более низкая производительность.

Как это обеспечить?

Соответственно, первое решение, которое вам нужно принять — где вы находитесь в CAP-теореме, вы хотите консистентность или доступность в случае инцидента.

Далее нужно понять, на каком уровне вы хотите проводить изменения. Возможно, вам хватит обычных атомарных записей, затрагивающих единственный объект, как умела и умеет MongoDB (сейчас она расширяет это дополнительно поддержкой полноценных транзакций). Напомню, что CAP-теорема ничего не говорит о консистентности операций записи, затрагивающих множественные объекты: система вполне может быть CP (т.е. предпочитать консистентность доступности) и при этом предоставлять только атомарные одиночные записи.

Если вам этого не хватает, мы начинаем подходить к концепции полноценных распределенных ACID-транзакций.

Замечу, что даже переходя в дивный новый мир распределенных ACID-транзакций, мы зачастую вынуждены чем-то жертвовать. Так например, ряд распределенных систем хранения имеет распределенные транзакции, но только в рамках одной партиции. Или, например, система может не поддерживать «I»-часть на нужном вам уровне, не имея изоляции, либо имея недостаточное количество уровней изоляции.

Эти ограничения зачастую были сделаны по какой-то причине: либо для упрощения реализации, либо, например, для повышения производительности, либо для чего-то еще. Они достаточны для большого количества кейсов, поэтому не стоит рассматривать их как минусы сами по себе.

Нужно понять, являются ли эти ограничения проблемой для вашего конкретного сценария. Если нет, — у вас есть более широкий выбор, и вы можете больший вес дать, например, показателям производительности или способности системы обеспечивать катастрофоустойчивость и т.д. Наконец, нужно не забывать, что у ряда систем эти параметры могут настраиваться вплоть до того, что система может быть CP или AP в зависимости от конфигурации.

Если наш продукт стремится быть CP, то обычно у него есть либо кворумный подход к выбору данных, либо выделенные узлы, которые являются основными владельцами записей, через них проходят все изменения данных, и в случае сетевых проблем, если эти мастер-узлы не могут дать ответ, считается, что данные в принципе, невозможно получить, либо арбитраж, когда внешний высокодоступный компонент (например, кластер ZooKeeper) может говорить, какой из сегментов кластера является основным, содержит актуальную версию данных и может эффективно обслуживать запросы.

Наконец, если нас интересует не просто CP, но поддержка полноценных распределенных ACID-транзакций, то зачастую или используется все же единый источник истины, например, централизованное дисковое хранилище, где наши узлы, по сути, выступают лишь кешами к нему, которые можно инвалидировать в момент коммита, или применяется протокол многофазового коммита.

Первый подход с единым диском также упрощает реализацию, дает низкие задержки на распределенных транзакциях, но торгует взамен очень ограниченной масштабируемостью на нагрузках с большими объемами записи.

Второй подход дает намного больше свободы в масштабировании, и, в свою очередь, делится на двухфазный (Wikipedia) и трехфазный (Wikipedia) протоколы коммита.

Рассмотрим на примере двухфазного коммита, который использует, например, Apache Ignite.

консистентные данные что это. Смотреть фото консистентные данные что это. Смотреть картинку консистентные данные что это. Картинка про консистентные данные что это. Фото консистентные данные что это

Процедура коммита делится на 2 фазы: prepare и commit.

На фазе prepare рассылается сообщение о подготовке к коммиту, и каждый участник при необходимости делает блокировку, выполняет все операции вплоть до фактического commit не включительно, рассылает prepare на свои реплики, если это предполагается продуктом. Если хотя бы один из участников ответил по какой-то причине отказом или оказался недоступен — данные фактически не поменялись, коммита не было. Участники откатывают изменения, снимают блокировки и возвращаются на исходное состояние.

На фазе commit отправляется фактическое выполнение commit на узлах кластера. Если по какой-то причине часть узлов была недоступна или ответила ошибкой, то к этому времени данные занесены в их redo-лог (поскольку prepare был выполнен успешно), и коммит в любом случае может быть завершен хотя бы в отложенном состоянии.

Наконец, если отказывает координатор, то на prepare-этапе коммит будет отменен, на commit-этапе может быть выбран новый координатор, и, если все узлы выполнили prepare, он может проверить и обеспечить выполнение этапа commit.

Разные продукты имеют свои особенности реализации и оптимизации. Так, например, некоторые продукты умеют в отдельных случаях сводить 2-х фазный коммит к 1-фазному, значительно выигрывая по производительности.

Выводы

Ключевой вывод: распределенные системы хранения данных — это достаточно развитый рынок, и продукты на нем могут обеспечивать высокую консистентность данных.

При этом продукты этой категории находятся на разных точках шкалы консистентности, от полностью AP-продуктов без какой-либо транзкционности, до CP-продуктов, которые дополнительно дают еще и полноценные ACID-транзакции. Часть продуктов может быть настроена в одну или в другую сторону.

Когда вы выбираете, что нужно вам, нужно учитывать потребности вашего кейса и хорошо понимать, на какие жертвы и компромиссы вы готовы пойти, потому что ничего не бывает бесплатно, и выбирая одно, вы, скорее всего, откажетесь от чего-то другого.

Оценивая продукты с этой стороны, стоит обращать внимание на то:

Источник

Что такое ACID в базах данных?

В частности, ACID имеет отношение к тому, как БД может восстанавливаться после ошибок, возникающих в процессе выполнения транзакции.

В базах данных, следующих принципу ACID, данные остаются целостными и консистентными, несмотря на любые ошибки.

Определение ACID

Atomicity (атомарность)

Атомарность гарантирует, что каждый запрос в транзакции будет выполнен успешно, либо вообще никакой, в случае ошибки одного. Не получится так, что часть запросов выполнятся успешно, а часть с ошибкой. Если хоть одна часть транзакции выполнится с ошибкой, вся транзакция не выполнится. Другими словами под атомарностью можно понимать «всё или ничего».

Consistency (консистентность, согласованность)

Это свойство даёт гарантию того, что все данные будут целостны. Данные будут корректны в соотвествии со всеми предопределёнными правилами, ограничениями, каскадами и триггерами, применёнными к БД.

Isolation (изолированность)

Гарантирует, что все транзакции будут выполняться изолированно. Ни одна транзакция не зааффектит на другую транзакцию. Другими словами, одна транзакция не сможет прочитать данные второй транзакции, которая ещё не выполнилась.

Durability (стойкость)

Durability означает, что когда транзакция будет применена, она останется в системе, даже если БД упала сразу после выполнения этой транзакции. Любые изменения, внесённые транзакцией, должны оставаться навсегда. Если БД сообщила об успешном выполнении транзакции, то она должна быть действительно применена.

Когда пригодится ACID?

Свойства ACID спроектированы для transaction-ориентированные баз данных.

ACID предлагает принципы, которым должны придерживаться базы данных, чтобы быть уверенным в том, что данные не будут повреждены в результате какой нибудь ошибки.

Транзакция это единая логическая операция, которая может состоять из одного или нескольких шагов. Например, транзакцией может быть перевод денежных средств между банковскими аккаунтами (снятие денег из одного и пополнение другого). Если в середине такой транзакции возникнет ошибка, может возникнуть большая неконсистентность в данных. Деньги будут вычтены с одного счёта, но не зачислены в другой.

Вот тут и должны быть применены принципы ACID.

Следуя принципу ACID, база данных будет целостна тогда и только тогда, когда она будет содержать все результаты успешно выполненных запросов, выполненных в транзакции. Любая ACID совместимая БД гарантирует, что будут применены изменения только успешных транзакций. В случае ошибки в транзакции, данные не будут изменены.

Таким образом, СУБД, совместимые с ACID, дают организациям уверенность в том, что данные в их базе данных будут целостны, даже если произойдёт какой-либо сбой в середине выполнения транзакции.

Типы сбоев

Ошибка транзакции

Эта ошибка может произойти из-за некорректных входных данных или любых других нарушений целостности. Она так же возникает в результате тайм-аута, либо в результате deadlock.

Системный сбой

Системный сбой может быть из-за ошибки в коде СУБД, либо аппаратного сбоя.

Медийные сбои

Эти сбои случаются, когда запись или чтение из хранилища невозможны (например сбой в работе жёсткого диска, либо ошибки в работе операционной системе). Эти ошибки возникают намного реже, чем первые 2 типа.

Следование ACID принципам

Все популярные реляционные базы данных следуют принципам ACID. Все они имеют инструменты, обеспечивающие целостность данных при сбоях программного и аппаратного обеспечения, а также при любых неудачных транзакциях.

Но с NoSQL базами данных ситуация обстоит немного по-другому. Эти базы данных часто предназначены для обеспечения высокой доступности в кластере, а обычно это означает, что в некоторой степени жертвуют консистентностью и/или стойкостью. Однако большинство NoSQL баз данных в некоторой степени могут обеспечить атомарность.

Но всё же, большинстве NoSQL баз данных заложены основы целостности данных, что означает, что данные могут быть не синхронизированы какое-то время, но в конечном итоге они всё таки будут синхронизированы.

Вдобавок, некоторые разработчики, такие как MarkLogic, OrientDB и Neo4j, предлагают ACID-совместимые системы управления базами данных NoSQL.

Источник

Паттерн «сага» как способ обеспечения консистентности данных

Всем привет. Уже сейчас в OTUS открывает набор в новую группу курса «Highload Architect». В связи с этим я продолжаю серию своих публикаций, написанных специально для этого курса, а также приглашаю вас на свой бесплатный демо урок по теме: «Индексы в MySQL: best practices и подводные камни». Записаться на вебинар можно тут.

консистентные данные что это. Смотреть фото консистентные данные что это. Смотреть картинку консистентные данные что это. Картинка про консистентные данные что это. Фото консистентные данные что это

Введение

Как известно, переход от монолита к микросервисной архитектуре вызывает ряд сложностей, связанных как с технической частью проекта, так и с человеческим фактором. Одна из самых сложных технических проблем вызывает обеспечение согласованности в распределенной системе.

В прошлый раз мы обсудили причины возникновения проблем с согласованностью в микросервисной архитектуре, оптимистичный подход к обеспечению согласованности и обеспечение согласованности с применением двухфазного коммита.

Паттерн «Сага»

Сага — это механизм, обеспечивающий согласованность данных в микросервисной архитектуре без применения распределенных транзакций.

Для каждой системной команды, которой надо обновлять данные в нескольких сервисах, создается некоторая сага. Сага представляет из себя некоторый «чек-лист», состоящий из последовательных локальных ACID-транзакций, каждая из которых обновляет данные в одном сервисе. Для обработки сбоев применяется компенсирующая транзакция. Такие транзакции выполняются в случае сбоя на всех сервисах, на которых локальные транзакции выполнились успешно.

Типов транзакций в саге несколько, целых четыре:

В случае с хореографической саги выделенный оркестратор отсутствует. На примере сервиса заказов и пользователей она может выглядеть так: сервис заказов получает запрос и создает заказ в состоянии PENDING, а затем публикует событие «Заказ создан». Обработчик событий в сервисе пользователей обрабатывает данное событие, пытается зарезервировать товар и публикует результат в виде события. Сервис заказов обрабывает данное событие, подтверждая или отменяя заказ в зависимости от прочитанного результата.

Сага с оркестрацией выглядит чуть более интересно. На примере указанных выше сервисов может получиться так: сервис заказов получает запрос, создает сагу, которая создает заказ в состоянии PENDING, а затем отправляет команду резервирования товара для сервиса пользователей. Сервис пользователей пытается зарезервировать товар и отправляет ответное сообщение с указанием результата. Сага одобряет или отменяет заказ.

Паттерн «сага» позволяет приложению поддерживать согласованность данных между нескольких сервисов без использования распределенных транзакций (двухфазных коммитов) и с избежанием проблем, обсужденных в предыдущей статье. Но с другой стороны, сильно осложняется модель программирования: например, разработчик для каждой транзакции должен писать компенсирующую транзакцию, которая отменяет изменения, сделанные внутри саги ранее.

Сага позволяет добиться ACD-модели (Atomicity + Consistency + Durability в терминах ACID), но одну букву мы потеряли. Недостаток буквы I приводит к известным проблемам недостатка изолированности. К ним относятся: потерянные обновления (lost updates) — одна сага перезаписывает изменения, внесенные другой, не читая их при этом, «грязное чтение» (dirty reads) — транзакция или сага читают незавершенные обновления другой саги, нечеткое/неповторяемое чтение (fuzzy/nonrepeatable reads) — два разных этапа саги читают одни и те же данные, но получают разные результаты, потому что другая сага внесла изменения. Существует ряд паттернов, позволяющих пофиксить те или иные аномалии: семантическая блокировка, коммутативные обновления, пессимистическое представление, повторное чтение значения, файл изменений и по значению. Вопрос обеспечения изоляции остается открытым.

Еще одна интересная проблема заключается в невозможности атомарных обновления базы данных и публикации сообщения в брокер сообщений для запуска дальнейших шагов саги.

Заключение

Мы поговорили о способах организации саги с применением хореографии и оркестрации, а также о проблемах, которые влечет применения данного паттерна. Далее мы поговорим о способах исправления некоторых аномалий и транзакционной отправки сообщений в брокер сообщений.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *