контроллер дисплея что это
Управляя TFT: платы контроллеров интерфейса TFT ЖК-панелей компании Clientop
Clientop Technology Co., Ltd. специализируется на монтаже и сборочном производстве как отдельных электронных модулей и узлов, так и полностью готовой продукции. Производство компании расположено в Шенжене (Китай). Клиентами Clientop являются крупные производители электронной индустрии, поставляющие затем продукцию, собранную с участием Clientop, на рынки под своими брендами. Компания осуществляет сборку материнских плат для компьютеров и ноутбуков, выпускает портативные DVD-плееры, TFT ЖК-мониторы, ЖК-телевизоры для автомобилей. Кроме того, она является дистрибьютором компаний-заказчиков, например, известного производителя TFT ЖК-панелей малого и среднего форматов — компании Tianma.
Clientop является лидером в секторе разработки системных дисплейных решений (рис. 1), а также производства, продажи продукции на основе ЖК-панелей для промышленных и OEM-приложений, и предлагает:
Рис. 1. Дисплейные компоненты выпускаемые Clientop
OEM-модули компании Clientop широко используются в торговых терминалах, информационных киосках, приборах промышленной автоматики, системах видеонаблюдения и безопасности, медицинских приборах, платежных терминалах, секторе домашней автоматики, игровых автоматах, сервисном и тестовом оборудовании, измерительных приборах, автомобильных приборных панелях, мультимедийных центрах. Продукция Clientop экспортируется в Германию, Великобританию, США, Италию, Австралию, а также в другие страны. Clientop является партнером таких известных брендов в дисплейной индустрии, как LGPhilips, AUO, SHARP, Samsung, Tianma.
Структура и функции платы контроллера ЖК-панели
Плата контроллера TFT ЖК-панели представляет собой интегрированное решение, позволяющее подключать различные типы TFT ЖК-панелей к источникам таких видеосигналов, как аналоговый RGB, S-video, композитный видеосигнал, DVI, HDMI. Платы предназначены для использования в ЖК-мониторах, ЖК-телевизорах, цифровых фоторамках, медиапроигрывателях, в дисплейных рекламных мониторах. Основная функция платы дисплейного контроллера — преобразование входных сигналов стандартных цифровых или аналоговых интерфейсов в сигналы управления TFT ЖК-панелью. Кроме того, контроллер обеспечивает преобразование видеосигналов для:
Плата дисплейного контроллера также содержит источники напряжений для питания схемы ЖК-панели и формирователь опорных уровней напряжений для питания столбцовых драйверов ЖК-панели. Платы современных контроллеров содержат дополнительные компоненты, расширяющие функциональные возможности дисплейного устройства. В зависимости от назначения модуля контроллера (монитор, медиаплеер, телевизор, рекламный проигрыватель) его структура может содержать дополнительные модули:
Выходной интерфейс с панелью включает (рис. 2) сигналы управления TCON (Timing Controller) для формирователя сигналов развертки в ЖК-панели, а также шины питания и опорные сигналы напряжения столбцовых драйверов. Микросхемой TCON осуществляется преобразование сигналов, полученных от контроллера, в сигналы управления столбцовыми и строчными драйверами матрицы TFT.
Рис. 2. Структура связей контроллера интерфейса с TFT ЖК-панелью
Как правило, в современных платах ЖК-панелей используется одна микросхема дисплейного контроллера, которая и обеспечивает выполнение всех функций обработки и преобразования входных видеосигналов в сигналы управления ЖК-панелью.
Дополнительно устанавливаются микросхемы декодеров для считывания мультимедийной информации.
Настройка параметров под конкретный тип ЖК-панели может осуществляться как в процессе производства (установка default), так и через управляющий DDC-интерфейс (протокол I 2 C), например, из компьютерного графического контроллера, а также самим пользователем в ручном режиме посредством клавиатуры, расположенной на передней панели конечного устройства, например, монитора. Как правило, используется пятикнопочная панель управления. Функции режимных кнопок при этом: POWER, MENU, SOURCE/UP, LEFT, RIGHT.
Схема интерфейса кнопочной панели управления OSD показана на рис. 3.
Рис. 3. Схема интерфейса кнопочной панели управления OSD
Установка режимных параметров производится посредством выбора из меню (рис. 4), которое формирует на экране ЖК-панели OSD-контроллер.
Рис. 4. Пример окна меню настройки параметров экрана ЖК-монитора
Экранное меню (OSD-меню) обеспечивает возможность графического отображения параметров и настроек монитора или ЖК-телевизора.
OSD-меню — характерная функция современного компьютерного прибора, обеспечивающая возможность графического отображения параметров и настроек дисплея. OSD-меню предоставляет собой не только удобный пользовательский интерфейс, но и возможность систематизированной настройки множества параметров. Режимные параметры записываются в микросхему EEPROM, стоящую на плате дисплейного контроллера. Доступ к EEPROM (чтение и изменение параметров) осуществляется с помощью интерфейса I 2 C по трем возможным каналам:
В базовом варианте на плате дисплейного контроллера расположены:
Входные стандартные видеоинтерфейсы подразделяются на:
Интерфейс TFT ЖК-панели
В современных TFT ЖК-панелях используется, в основном, два вида интерфейсов: интерфейс параллельной шины и последовательный LVDS-интерфейс.
Параллельная шина содержит три группы сигналов для основных цветов — RGB. В зависимости от типа ЖК-панели каждый цвет кодируется шестью или восемью разрядами. Уровни сигналов — ТТЛ. Кроме того, в интерфейсе присутствуют сигналы синхронизации RGB-слов, а также сигналы строчной и кадровой развертки. Параллельная шина используется в основном для малоформатных ЖК-панелей с малой полосой видеосигналов.
LVDS — последовательный интерфейс передачи RGB-сигналов, представлен дифференциальными низкоуровневыми сигналами.
Платы дисплейных контроллеров Clientop
Компания Clientop поставляет различные модификации модулей контроллеров интерфейса с TFT ЖК-панелями. Набор функций и интерфейсов определяются в большей степени параметрами микросхемы дисплейного контроллера, которая и является «сердцем» этих модулей.
Плата контроллера TFT ЖК-дисплея содержит:
Как правило, все модели модулей контроллеров Clientop поставляются вместе с кнопочными платами управления OSD.
Компания Clientop производит и поставляет широкую номенклатуру плат дисплейных контроллеров для разных приложений и с разной функциональностью:
В платах дисплейных контроллеров, выпускаемых Clientop, используются современные компоненты, обеспечивающие высокий уровень интеграции и широкий набор функций. В частности, в них применяются микросхемы компаний Realtek и MStar.
Контролеры с аналоговым видеоинтерфейсом
Такие контролеры, в соответствии с терминологией Clientop, называются AD board. Входной видеоинтерфейс — VGA (SVGA) RGB. Однако некоторые модели этого типа имеют дополнительно интерфейс DVI. Выходной интерфейс ЖК-панели может быть как параллельный, так и LVDS. Форматы стандартных аналоговых видеоинтерфейсов, поддерживаемых контроллерами TFT ЖК-панелей серии AD board, представлены в таблице 1.
Таблица 1. Форматы стандартных аналоговых видеоинтерфейсов, поддерживаемых контроллерами TFT ЖК-панелей серии AD board
Стандарт | Формат пикселей | Частота кадровой развертки, Гц |
---|---|---|
VGA | 640×480 640×350 720×400 | 60, 70, 72, 75 |
SVGA | 800×600 | 56, 60, 72, 75 |
XGA | 1024×768 | 60, 70, 72, 75 |
SXGA | 1280×1024 1600×1280 | 60 75 |
На рисунках 5 и 6 показан общий вид таких моделей контроллеров.
Рис. 5. Плата контроллера NTA91B
Устройство, описание принципа работы узлов монитора.
Для того чтобы починить ЖК монитор своими руками, необходимо в первую очередь понимать, из каких основных электронных узлов и блоков состоит данное устройство и за что отвечает каждый элемент электронной схемы. Начинающие радиомеханики в начале своей практики считают, что успех в ремонте любого прибора заключается в наличии принципиальной схемы конкретного аппарата. Но на самом деле, это ошибочное мнение и принципиальная схема нужна не всегда.
Итак, вскроем крышку первого попавшегося под руку ЖК монитора и на практике разберёмся в его устройстве.
ЖК монитор. Основные функциональные блоки.
Жидкокристаллический монитор состоит из нескольких функциональных блоков, а именно:
Жидкокристаллическая панель представляет собой завершённое устройство. Сборкой ЖК-панели, как правило, занимается конкретный производитель, который кроме самой жидкокристаллической матрицы встраивает в ЖК-панель люминесцентные лампы подсветки, матовое стекло, поляризационные цветовые фильтры и электронную плату дешифраторов, формирующих из цифровых сигналов RGB напряжения для управления затворами тонкоплёночных транзисторов (TFT).
Рассмотрим состав ЖК-панели компьютерного монитора ACER AL1716. ЖК-панель является завершённым функциональным устройством и, как правило, при ремонте разбирать её не надо, за исключением замены вышедших из строя ламп подсветки.
Маркировка ЖК-панели: CHUNGHWA CLAA170EA
На тыльной стороне ЖК-панели расположена довольно большая печатная плата, к которой от основной платы управления подключен многоконтактный шлейф. Сама печатная плата скрыта под металлической планкой.
ЖК-панель компьютерного монитора Acer AL1716
На печатной плате установлена многовыводная микросхема NT7168F-00010. Данная микросхема подключается к TFT матрице и участвует в формировании изображения на дисплее. От микросхемы NT7168F-00010 отходит множество выводов, которые сформированы в десять шлейфов под обозначением S1-S10. Эти шлейфы довольно тонкие и на вид как бы приклеены к печатной плате, на которой находиться микросхема NT7168F.
Печатная плата ЖК-панели и её элементы
Плату управления по-другому называют основной платой (Main board). На основной плате размещены два микропроцессора. Один из них управляющий 8-битный микроконтроллер SM5964 с ядром типа 8052 и 64 кбайт программируемой Flash-памяти.
Микропроцессор SM5964 выполняет довольно небольшое число функций. К нему подключена кнопочная панель и индикатор работы монитора. Этот процессор управляет включением/выключением монитора, запуском инвертора ламп подсветки. Для сохранения пользовательских настроек к микроконтроллеру по шине I2C подключена микросхема памяти. Обычно, это восьмивыводные микросхемы энергонезависимой памяти серии 24LCxx.
Основная плата (Main board) ЖК-монитора.
Вторым микропроцессором на плате управления является так называемый мониторный скалер (контроллер ЖКИ) TSU16AK. Задач у данной микросхемы много. Она выполняет большинство функций, связанных с преобразованием и обработкой аналогового видеосигнала и подготовке его к подаче на панель ЖКИ.
В отношении жидкокристаллического монитора нужно понимать, что это по своей сути цифровое устройство, в котором всё управление пикселями ЖК-дисплея происходит в цифровом виде. Сигнал, приходящий с видеокарты компьютера является аналоговым и для его корректного отображения на ЖК матрице необходимо произвести множество преобразований. Для этого и предназначен графический контроллер, а по-другому мониторный скалер или контроллер ЖКИ.
В задачи контроллера ЖКИ входят такие как пересчёт (масштабирование) изображения для различных разрешений, формирование экранного меню OSD, обработка аналоговых сигналов RGB и синхроимпульсов. В контроллере аналоговые сигналы RGB преобразуются в цифровые посредством 3-х канальных 8-битных АЦП, которые работают на частоте 80 МГц.
Мониторный скалер TSU16AK взаимодействует с управляющим микроконтроллером SM5964 по цифровой шине. Для работы ЖК-панели графический контроллер формирует сигналы синхронизации, тактовой частоты и сигналы инициализации матрицы.
Микроконтроллер TSU16AK через шлейф связан с микросхемой NT7168F-00010 на плате ЖК-панели.
При неисправностях графического контроллера у монитора, как правило появляются дефекты, связанные с правильным отображением картинки на дисплее (на экране могут появляться полосы и т.п). В некоторых случаях дефект можно устранить пропайкой выводов скалера. Особенно это актуально для мониторов, которые работают круглосуточно в жёстких условиях.
При длительной работе происходит нагрев, что плохо сказывается на качестве пайки. Это может привести к неисправностям. Дефекты, связанные с качеством пайки нередки и встречаются и у других аппаратов, например, DVD плееров. Причиной неисправности служит деградация либо некачественная пайка многовыводных планарных микросхем.
Блок питания и инвертор ламп подсветки.
Наиболее интересным в плане изучения является блок питания монитора, так как назначение элементов и схемотехника легче в понимании. Кроме того, по статистике неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Поэтому практические знания устройства, элементной базы и схемотехники блоков питания непременно будут полезны в практике ремонта радиоаппаратуры.
Блок питания ЖК монитора состоит из двух. Первый – это AC/DC адаптер или по-другому сетевой импульсный блок питания (импульсник). Второй – DC/AC инвертор. По сути это два преобразователя. AC/DC адаптер служит для преобразования переменного напряжения сети 220 В в постоянное напряжение небольшой величины. Обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 вольт.
Инвертор DC/AC наоборот преобразует постоянное напряжение (DC) в переменное (AC) величиной около 600 — 700 В и частотой около 50 кГц. Переменное напряжение подаётся на электроды люминесцентных ламп, встроенных в ЖК-панель.
Вначале рассмотрим AC/DC адаптер. Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров (за исключением дешёвых зарядников для мобильного, например).
Так в блоке питания ЖК монитора Acer AL1716 применена микросхема TOP245Y. Документацию (datasheet) по данной микросхеме легко найти из открытых источников.
В документации на микросхему TOP245Y можно найти типовые примеры принципиальных схем блоков питания. Это можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы.
Вот несколько примеров принципиальных схем блоков питания на базе микросхем серии TOP242-249.
В следующей схеме применены сдвоенные диоды с барьером Шоттки (MBR20100). Аналогичные диодные сборки (SRF5-04) применены в рассматриваемом нами блоке монитора Acer AL1716.
Рис 2. Принципиальная схема блока питания на базе микросхемы из серии TOP242-249
Заметим, что приведённые принципиальные схемы являются примерами. Реальные схемы импульсных блоков могут несколько отличаться.
Микросхема TOP245Y представляет собой законченный функциональный прибор, в корпусе которого имеется ШИМ – контроллер и мощный полевой транзистор, который переключается с огромной частотой от десятков до сотен килогерц. Отсюда и название — импульсный блок питания.
Блок питания ЖК монитора (AC/DC адаптер)
Схема работы импульсного блока питания сводится к следующему:
Выпрямление переменного сетевого напряжения 220В.
Эту операцию выполняет диодный мост и фильтрующий конденсатор. После выпрямления на конденсаторе напряжение чуть больше чем сетевое. На фото показан диодный мост, а рядом фильтрующий электролитический конденсатор (82 мкФ 450 В) – синий бочонок.
Преобразование напряжения и его понижение с помощью трансформатора.
Коммутация с частотой в несколько десятков – сотен килогерц постоянного напряжения (>220 B) через обмотку высокочастотного импульсного трансформатора. Эту операцию выполняет микросхема TOP245Y. Импульсный трансформатор выполняет ту же роль, что и трансформатор в обычных сетевых адаптерах, за одним исключением. Работает он на более высоких частотах, во много раз больше, чем 50 герц.
Поэтому для изготовления его обмоток требуется меньшее число витков, а, следовательно, и меди. Но необходим сердечник из феррита, а не из трансформаторной стали как у трансформаторов на 50 герц. Те, кто не знает, что такое трансформатор и зачем он применяется, сперва ознакомьтесь со статьёй про трансформатор.
В результате трансформатор получается очень компактным. Также стоит отметить, что импульсные блоки питания очень экономичны, у них высокий КПД.
Выпрямление пониженного трансформатором переменного напряжения.
Эту функцию выполняют мощные выпрямительные диоды. В данном случае применены диодные сборки с маркировкой SRF5-04.
Для выпрямления токов высокой частоты используют диоды Шоттки и обычные силовые диоды с p-n переходом. Обычные низкочастотные диоды для выпрямления токов высокой частоты менее предпочтительны, но используются для выпрямления больших напряжений (20 – 50 вольт). Это нужно учитывать при замене дефектных диодов.
У диодов Шоттки есть некоторые особенности, которые нужно знать. Во-первых, эти диоды имеют малую ёмкость перехода и способны быстро переключаться – переходить из открытого состояния в закрытое. Это свойство и используется для работы на высоких частотах. Диоды Шоттки имеют малое падения напряжения около 0,2-0,4 вольт, против 0,6 – 0,7 вольт у обычных диодов. Это свойство повышает их КПД.
Есть у диодов с барьером Шоттки и нежелательные свойства, которые затрудняют их более широкое использование в электронике. Они очень чувствительны к превышению обратного напряжения. При превышении обратного напряжения диод Шоттки необратимо выходит из строя.
Обычный же диод переходит в режим обратимого пробоя и может восстановиться после превышения допустимого значения обратного напряжения. Именно это обстоятельство и является ахиллесовой пятой, которое служит причиной выгорания диодов Шоттки в выпрямительных цепях всевозможных импульсных блоках питания. Это стоит учитывать в проведении диагностики и ремонте.
Для устранения опасных для диодов Шоттки всплесков напряжения, образующихся в обмотках трансформатора на фронтах импульсов, применяются так называемые демпфирующие цепи. На схеме обозначена как R15C14 (см.рис.1).
При анализе схемотехники блока питания ЖК монитора Acer AL1716 на печатной плате также обнаружены демпфирующие цепи, состоящие из smd резистора номиналом 10 Ом (R802, R806) и конденсатора (C802, C811). Они защищают диоды Шоттки (D803, D805).
Демпфирующие цепи на плате блока питания
Также стоит отметить, что диоды Шоттки используются в низковольтных цепях с обратным напряжением, ограниченным единицами – несколькими десятками вольт. Поэтому, если требуется получение напряжения в несколько десятков вольт (20-50), то применяются диоды на основе p-n перехода. Это можно заметить, если просмотреть datasheet на микросхему TOP245, где приводятся несколько типовых схем блоков питания с разными выходными напряжениями (3,3 B; 5 В; 12 В; 19 В; 48 В).
Диоды Шоттки чувствительны к перегреву. В связи с этим их, как правило, устанавливают на алюминиевый радиатор для отвода тепла.
Отличить диод на основе p-n перехода от диода на барьере Шоттки можно по условному графическому обозначению на схеме.
Условное обозначение диода с барьером Шоттки.
Условное обозначение диода на основе p-n перехода.
После выпрямительных диодов ставятся электролитические конденсаторы, служащие для сглаживания пульсаций напряжения. Далее с помощью полученных напряжений 12 В; 5 В; 3,3 В запитываются все блоки LCD монитора.
По своему назначению инвертор схож с электронными пуско-регулирующими аппаратами (ЭПРА), которые нашли широкое применение в осветительной технике для питания бытовых осветительных люминесцентных ламп. Но, между ЭПРА и инвертором ЖК монитора есть существенные различия.
Инвертор ЖК монитора, как правило, построен на специализированной микросхеме, что расширяет набор функций и повышает надёжность. Так, например, инвертор ламп подсветки ЖК монитора Acer AL1716 построен на базе ШИМ контроллера OZ9910G. Микросхема контроллера смонтирована на печатной плате планарным монтажом.
Микросхема контроллера OZ9910G
Инвертор преобразует постоянное напряжение, значение которого составляет 12 вольт (зависит от схемотехники) в переменное 600-700 вольт и частотой 50 кГц.
Контроллер инвертора способен изменять яркость люминесцентных ламп. Сигналы для изменения яркости ламп поступают от контроллера ЖКИ. К микросхеме-контроллеру подключены полевые транзисторы или их сборки. В данном случае к контроллеру OZ9910G подключены две сборки комплементарных полевых транзисторов AP4501SD (На корпусе микросхемы указано только 4501S).
Сборка полевых транзисторов AP4501SD и её цоколёвка
Также на плате блока питания установлено два высокочастотных трансформатора, служащих для повышения переменного напряжения и подачи его на электроды люминесцентных ламп. Кроме основных элементов, на плате установлены всевозможные радиоэлементы, служащие для защиты от короткого замыкания и неисправности ламп.
Плата инвертора и её элементы
Информацию по ремонту ЖК мониторов можно найти в специализированных журналах по ремонту. Так, например, в журнале “Ремонт и сервис электронной техники” №1 2005 года (стр.35 – 40), подробно рассмотрено устройство и принципиальная схема LCD-монитора “Rover Scan Optima 153”.
Среди неисправностей мониторов довольно часто встречаются такие, которые легко устранить своими руками за несколько минут. Например, уже упомянутый ЖК монитор Acer AL1716 пришёл на стол ремонта по причине нарушения контакта вывода розетки для подключения сетевого шнура. В результате монитор самопроизвольно выключался.
После разборки ЖК монитора было обнаружено, что на месте плохого контакта образовывалась мощная искра, следы которой легко обнаружить на печатной плате блока питания. Мощная искра образовывалась ещё и потому, что в момент контакта заряжается электролитический конденсатор в фильтре выпрямителя. Причина неисправности — деградация пайки.
Деградация пайки, вызвавщая неисправность монитора
Также стоит заметить, что порой причиной неисправности может служить пробой диодов выпрямительного диодного моста.
Замена контроллера тачскрина
Пошаговая инструкция по замене контроллера тачскрина
Контроллер тачскрина
Практически каждому пользователю современного смартфона известны проблемы, которые связанны с контроллером тачскрина. Если телефона на гарантии, то поводом для беспокойства нет. Но если гарантийный период окончился, то возникает проблема, как и где заменить эту деталь. Многие не желая обращаться в сервисные центры, пробуют самостоятельно осуществить замену матрицы, сенсорного стекла или контроллера. За счёт того, что все запчасти к телефонам можно купить в интернете, ремонт становится в разы проще.
Что это и как понять, что сломалось?
Контроллер тачскрина является сложной электронной системой, точно реагирующей на прикосновения пальцами к дисплею. Если эта система неисправна, то нажатия будут получать плохую обратную реакцию. Более того, к симптомам поломок можно отнести полную неработоспособность тачскрина, что проявляется в виде полос на дисплее или помех в верхней части телефона. Продолжать использовать телефона изредка ещё можно, но комфорта от этого не будет.
Среди причин, из-за которых ломается контроллер сенсорного экрана можно назвать:
В основе корпуса мобильного телефона лежит тонкий алюминий. В связи с этим, любая нагрузка на телефон в первую очередь негативно сказывается на самом корпусе, что и является причиной различных деформаций. Нередки случаи, когда из-за механических повреждений, задевается и материнская плата, в связи с чем возникают повреждения в пайке её компонентов. За счёт того, что контактные площадки отходят от микросхемы, контроллер тачскрина полностью выходит из строя.
Если внутрь мобильного телефона попадает жидкость, то на контактах микросхем возможно возникновение короткого замыкания. В результате либо устройство полностью выйдет из строя, либо сенсор касания потеряет свою чувствительность. Подобные проблемы особенно характерны для iPhone 6 Plus. Среди других моделей iPhone такая проблема, распространена меньше. Связано это с тем, что у них более прочный корпус, а дисплей в сборе с тачскрином имеет большую прочность.
Как заменить контроллер тачскрина?
Ремонт мобильного телефона, при неисправном контроллере тачскрина это сложный технологический процесс, во время которого на материнскую плату оказывается сильное термическое воздействие. Если учитывать все факторы риска, то при неправильном ремонте, из строя могут выйти и другие компоненты. Лучшим вариантом будет обратиться в сервисный центр, который имеет в распоряжении профессиональное оборудование. Таким образом, можно будет достичь значительного снижения термоудара, что в разы повысит шансы на успех.
Сам процесс ремонтной работы состоит из нескольких этапов:
За счёт того, что контроллер тачскрина относится к деликатным элементам матрицы, его ремонт следует доверять только проверенному сервисному центру или осуществлять самостоятельно, при полной уверенности в своих способностях. Лучшим вариантом будет приобретение защитных аксессуаров, который защитят тачскрин от механических повреждений или попадания влаги.