кто или что может являться исполнителем алгоритма
Учитель информатики
Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.
§ 2.1. Алгоритмы и исполнители
Информатика. 8 класса. Босова Л.Л. Оглавление
Ключевые слова:
2.1.1. Понятие алгоритма
Каждый человек в повседневной жизни, в учёбе или на работе решает огромное количество задач самой разной сложности. Сложные задачи требуют длительных размышлений для нахождения решения; простые и привычные задачи человек решает не задумываясь, автоматически. В большинстве случаев решение каждой задачи можно разбить на простые этапы (шаги). Для многих таких задач (установка программного обеспечения, сборка шкафа, создание сайта, эксплуатация технического устройства, покупка авиабилета через Интернет и т. д.) уже разработаны и предлагаются пошаговые инструкции, при последовательном выполнении которых можно прийти к желаемому результату.
Пример 1. Задача «Найти среднее арифметическое двух чисел» решается в три шага:
Пример 2. Задача «Внести деньги на счёт телефона» подразделяется на следующие шаги:
Пример 3. Этапы решения задачи «Нарисовать весёлого ёжика» представлены графически:
Нахождение среднего арифметического, внесение денег на телефонный счёт и рисование ежа — на первый взгляд совершенно разные процессы. Но у них есть общая черта: каждый из этих процессов описывается последовательностями кратких указаний, точное следование которым позволяет получить требуемый результат. Последовательности указаний, приведённые в примерах 1-3, являются алгоритмами решения соответствующих задач. Исполнитель этих алгоритмов — человек.
Алгоритм может представлять собой описание некоторой последовательности вычислений (пример 1) или шагов нематематического характера (примеры 2-3). Но в любом случае перед его разработкой должны быть чётко определены начальные условия (исходные данные) и то, что предстоит получить (результат). Можно сказать, что алгоритм — это описание последовательности шагов в решении задачи, приводящих от исходных данных к требуемому результату.
В общем виде схему работы алгоритма можно представить следующим образом (рис. 2.1).
Алгоритмами являются изучаемые в школе правила сложения, вычитания, умножения и деления чисел, многие грамматические правила, правила геометрических построений и т. д.
Анимации «Работа с алгоритмом» (193576), «Наибольший общий делитель» (170363), «Наименьшее общее кратное» (170390) помогут вам вспомнить некоторые алгоритмы, изученные на уроках русского языка и математики (http://sc.edu.ru/).
Пример 4. Некоторый алгоритм приводит к тому, что из одной цепочки символов получается новая цепочка следующим образом:
Получившаяся таким образом цепочка является результатом работы алгоритма.
Так, если исходной была цепочка А#В, то результатом работы алгоритма будет цепочка #А1В2, а если исходной цепочкой была АБВ@, то результатом работы алгоритма будет цепочка БА@В2.
2.1.2. Исполнитель алгоритма
Каждый алгоритм предназначен для определённого исполнителя.
Исполнитель — это некоторый объект (человек, животное, техническое устройство), способный выполнять определённый набор команд.
Различают формальных и неформальных исполнителей. Формальный исполнитель одну и ту же команду всегда выполняет одинаково. Неформальный исполнитель может выполнять команду по-разному.
Рассмотрим более подробно множество формальных исполнителей. Формальные исполнители необычайно разнообразны, но для каждого из них можно указать следующие характеристики: круг решаемых задач (назначение), среду, систему команд и режим работы.
Круг решаемых задач. Каждый исполнитель создаётся для решения некоторого круга задач — построения цепочек символов, выполнения вычислений, построения рисунков на плоскости и т. д.
Среда исполнителя. Область, обстановку, условия, в которых действует исполнитель, принято называть средой данного исполнителя. Исходные данные и результаты любого алгоритма всегда принадлежат среде того исполнителя, для которого предназначен алгоритм.
Система команд исполнителя. Предписание исполнителю о выполнении отдельного законченного действия называется командой. Совокупность всех команд, которые могут быть выполнены некоторым исполнителем, образует систему команд данного исполнителя (СКИ). Алгоритм составляется с учётом возможностей конкретного исполнителя, иначе говоря, в системе команд исполнителя, который будет его выполнять.
Режимы работы исполнителя. Для большинства исполнителей предусмотрены режимы непосредственного управления и программного управления. В первом случае исполнитель ожидает команд от человека и каждую поступившую команду немедленно выполняет. Во втором случае исполнителю сначала задаётся полная последовательность команд (программа), а затем он выполняет все эти команды в автоматическом режиме. Ряд исполнителей работает только в одном из названных режимов.
Рассмотрим примеры исполнителей.
Пример 5. Исполнитель Черепашка перемещается на экране компьютера, оставляя след в виде линии. Система команд Черепашки состоит из двух команд:
Запись Повтори k [ … ] означает, что последовательность команд в скобках повторится k раз.
Подумайте, какая фигура появится на экране после выполнения Черепашкой следующего алгоритма.
Повтори 12 [Направо 45 Вперёд 20 Направо 45]
Пример 6. Система команд исполнителя Вычислитель состоит из двух команд, которым присвоены номера:
1 — вычти 1
2 — умножь на 3
Первая из них уменьшает число на 1, вторая увеличивает число в 3 раза. При записи алгоритмов для краткости указываются лишь номера команд. Например, алгоритм 21212 означает следующую последовательность команд:
С помощью этого алгоритма число 1 будет преобразовано в 15: ((1 • 3 — 1) • 3-1) • 3 = 15.
Пример 7. Исполнитель Робот действует на клетчатом поле, между соседними клетками которого могут стоять стены. Робот передвигается по клеткам поля и может выполнять следующие команды, которым присвоены номера:
1 — вверх
2 — вниз
3 — вправо
4 — влево
При выполнении каждой такой команды Робот перемещается в соседнюю клетку в указанном направлении. Если же в этом направлении между клетками стоит стена, то Робот разрушается.
Что произойдёт с Роботом, если он выполнит последовательность команд 32323 (здесь цифры обозначают номера команд), начав движение из клетки А? Какую последовательность команд следует выполнить Роботу, чтобы переместиться из клетки А в клетку В, не разрушившись от встречи со стенами?
При разработке алгоритма:
Можно сказать, что алгоритм — модель деятельности исполнителя алгоритмов.
2.1.3. Свойства алгоритма
Не любая инструкция, последовательность предписаний или план действий может считаться алгоритмом. Каждый алгоритм обязательно обладает следующими свойствами: дискретность, понятность, определённость, результативность и массовость.
Свойство дискретности означает, что путь решения задачи разделён на отдельные шаги (действия). Каждому действию соответствует предписание (команда). Только выполнив одну команду, исполнитель может приступить к выполнению следующей команды.
Свойство понятности означает, что алгоритм состоит только из команд, входящих в систему команд исполнителя, т. е. из таких команд, которые исполнитель может воспринять и по которым может выполнить требуемые действия.
Свойство определённости означает, что в алгоритме нет команд, смысл которых может быть истолкован исполнителем неоднозначно; недопустимы ситуации, когда после выполнения очередной команды исполнителю неясно, какую команду выполнять следующей. Благодаря этому результат алгоритма однозначно определяется набором исходных данных: если алгоритм несколько раз применяется к одному и тому же набору исходных данных, то на выходе всегда получается один и тот же результат.
Свойство результативности означает, что алгоритм должен обеспечивать получение результата после конечного, возможно, очень большого, числа шагов. При этом результатом считается не только обусловленный постановкой задачи ответ, но и вывод о невозможности продолжения по какой-либо причине решения данной задачи.
Свойство массовости означает, что алгоритм должен обеспечивать возможность его применения для решения любой задачи из некоторого класса задач. Например, алгоритм нахождения корней квадратного уравнения должен быть применим к любому квадратному уравнению, алгоритм перехода улицы должен быть применим в любом месте улицы, алгоритм приготовления лекарства должен быть применим для приготовления любого его количества и т. д.
Пример 8. Рассмотрим один из методов нахождения всех простых чисел, не превышающих некоторое натуральное число п. Этот метод называется «решето Эратосфена» по имени предложившего его древнегреческого учёного Эратосфена (III в. до н. э.).
Для нахождения всех простых чисел, не больших заданного числа n, следуя методу Эратосфена, нужно выполнить следующие шаги:
Более наглядное представление о методе нахождения простых чисел вы сможете получить с помощью размещённой в Единой коллекции цифровых образовательных ресурсов анимации «Решето Эратосфена» (180279).
Рассмотренная последовательность действий является алгоритмом, так как она удовлетворяет свойствам:
Рассмотренные свойства алгоритма позволяют дать более точное определение алгоритма.
Алгоритм — это предназначенное для конкретного исполнителя описание последовательности действий, приводящих от исходных данных к требуемому результату, которое обладает свойствами дискретности, понятности, определённости, результативности и массовости.
2.1.4. Возможность автоматизации деятельности человека
Разработка алгоритма — как правило, трудоёмкая задача, требующая от человека глубоких знаний, изобретательности и больших временных затрат.
Решение задачи по готовому алгоритму требует от исполнителя только строгого следования заданным предписаниям.
Пример 9. Из кучки, содержащей любое, большее трёх, количество каких-либо предметов, двое играющих по очереди берут по одному или по два предмета. Выигрывает тот, кто своим очередным ходом сможет забрать все оставшиеся предметы.
Рассмотрим алгоритм, следуя которому первый игрок наверняка обеспечит себе выигрыш.
Исполнитель может не вникать в смысл того, что он делает, и не рассуждать, почему он поступает так, а не иначе, т. е. он может действовать формально. Способность исполнителя действовать формально обеспечивает возможность автоматизации деятельности человека. Для этого:
Самое главное: Алгоритмы и исполнители
Исполнитель — некоторый объект (человек, животное, техническое устройство), способный выполнять определённый набор команд.
Формальный исполнитель одну и ту же команду всегда выполняет одинаково. Для каждого формального исполнителя можно указать: круг решаемых задач, среду, систему команд и режим работы.
Алгоритм — предназначенное для конкретного исполнителя описание последовательности действий, приводящих от исходных данных к требуемому результату, которое обладает свойствами дискретности, понятности, определённости, результативности и массовости.
Способность исполнителя действовать формально обеспечивает возможность автоматизации деятельности человека.
Исполнитель алгоритма
Урок 21. Информатика 4 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Исполнитель алгоритма»
Привет, мальчики и девочки!
На прошлых уроках мы с вами узнали, что алгоритм – это описание подробного плана последовательности действий, который необходимо выполнить, чтобы решить задачу. Но не каждый план действий можно назвать алгоритмом.
Давайте, вспомним почему.
Чтобы план действий можно было назвать алгоритмом он должен обладать следующими свойствами:
· количество шагов известно и конечно;
· понятен смысл шагов;
· выполнение приводит к решению задачи и подходит для решения целого класса задач.
А помните ли вы, какие формы записи алгоритмов существуют?
Это текстовая и графическая формы.
Графическая форма, которая описывается в виде блок-схемы.
И мы помним, что бывает линейный алгоритм, в котором все шаги выполняются последовательно.
Также есть алгоритм и с ветвлением – это алгоритм, в котором есть блок с условием, один вход и два выхода: «Да» и «Нет».
Ну что же, мы вспомнили, что изучили на предыдущих уроках.
Сейчас я хочу, чтобы вы вспомнили алгоритм «собраться в школу».
Ребята, скажите, кто выполняет этот алгоритм в данном случае?
Та-а-а-к, а теперь вспомним алгоритм нахождения периметра треугольника.
А исполнять его может и ученик, и учитель и даже родители.
Вот мы и подошли к тебе нашего сегодняшнего урока – «Исполнитель алгоритма».
В алгоритмах, которые мы рассмотрели ранее, исполнителем был человек.
Но выполнить команды могут и другие живые существа. Например, собака выполняет команды хозяина.
Но не только живые существа выполняют команды.
Наверное, вы видели машинку, которой можно управлять при помощи пульта?
В данном случае машинка выполняет команды, которые вы ей задаёте – вперёд, назад, повернуть налево, направо.
Дома мама кладёт грязную одежду в стиральную машину, выбирает режим, то есть программу стирки, и машина выполняет определённый алгоритм действий.
Получается, что человек, машина, животное, управляемая игрушка могут выполнять команды. Значит они являются исполнителями алгоритма.
Исполнитель алгоритма – это объект, выполняющий команды (шаги, инструкции) по определённым правилам и в нужном порядке.
Рассмотрим стиральную машину. После того как мама или любой другой человек выбирает режим стирки, машина начинает выполнять действия, которые заложены в её память для выполнения этого режима стирки. И выполняет машина команды от начала до конца строго по порядку без участия человека. Такой исполнитель алгоритма, как стиральная машина, называется автоматическим исполнителем.
Автоматический исполнитель выполняет только назначенный ему набор команд. Другие команды, которые не входят в этот набор, исполнитель выполнить не может, так как он не понимает неизвестные команды.
Ребята, вы знаете, что исполнитель может принимать команды в виде сигнала. Это могут быть слова, звуковой сигнал, световой сигнал, радиосигнал и другие.
Для исполнителя каждый сигнал имеет определённое значение. Например, управляемая машинка «понимает» и исполняет такие команды, как «вперёд», «назад», «влево», «вправо».
Наверное, у большинства из вас дома есть компьютер.
А его можно назвать исполнителем?
Компьютер – это такой исполнитель, который обрабатывает закодированную информацию, то есть данные, исполняя программу, которая написана человеком.
Вы же помните, что закодированная информация – это информация, которая представлена в форме, удобной для её хранения и передачи.
Кодировать информацию можно звуками, буквами, цифрами, рисунками, нотами, знаками и другим.
Компьютер обрабатывает любую информацию – звуковую, текстовую, графическую, числовую.
Использовать компьютер, то есть работать на нём, может человек любой профессии: учёный, строитель, учитель. Но не обязательно нужно работать, чтобы пользоваться компьютером. Его могут использовать мальчики и девочки, бабушки и дедушки. На компьютере можно играть, переписываться в социальных сетях, рисовать и многое-многое другое.
Поэтому компьютер – это универсальный исполнитель алгоритмов.
А кто ещё является универсальным исполнителем алгоритмов?
Только человек понимает и обрабатывает информацию, составляет и исполняет алгоритмы. А компьютер не создаёт алгоритмы, не понимает смысла программ. Он только выполняет шаги программы, которые для него написал человек на каком-либо языке программирования.
Язык программирования – это искусственный язык, созданный человеком, чтобы обрабатывать информацию с помощью компьютера.
У компьютера, как и у человека может быть большо-о-ой набор команд.
Кстати, список, или набор, всех команд (шагов или инструкций), которые исполнитель способен выполнить, называется системой команд исполнителя.
Например, в систему команд исполнителя-человека могут входить команды – «реши пример», «скажи ответ», «найди ошибку», «подними руку». В данном случае исполнителем-человеком может быть ученик. Он понимает и может выполнить эти команды.
Другой пример, собака понимает определённые команды: «фу», «рядом», «сидеть», «лежать» и другие.
А сейчас давайте поиграем, чтобы закрепить ваши знания.
Найдите на кухне автоматических исполнителей.
Давайте проверим, всех ли автоматических исполнителей вы нашли.
Стиральная машина, которой мы задаём программу для стирки.
Микроволновая печь. В неё мы ставим разогреться еду на определённое время, или готовим еду, включая выбранный режим.
Посудомоечная машина, которой также, как и стиральной машине, задаётся режим работы.
Кофемашина. Мы выбираем тип кофе, и машина делает его по алгоритму.
Ребята, вы молодцы, но давайте выполним вот такое задание: выберите инструкции, которые компьютер не может выполнить.
Вывести ответ на экран.
Понять смысл программы.
Создать план действий.
Рассказать решение задачи.
Правильный ответ на это задание:
Понять смысл программы.
Создать план действий.
Рассказать решение задачи.
Ну что же, а теперь повторим самое главное, что мы сегодня узнали.
Исполнитель алгоритма – это объект, который выполняет команды (шаги, инструкции) по определённым правилам и в нужном порядке. Например, человек, компьютер.
Человек создаёт алгоритм и исполняет его.
Компьютер только выполняет алгоритм, написанный человеком на языке программирования.
Система команд исполнителя – это список команд или набор шагов, которые способен выполнить конкретный исполнитель.
Автоматический исполнитель – это исполнитель, выполняющий действия, которые заложены в его память, без участия человека.
Сегодня мы с вами изучили очень важный материал, и уже подошло время прощаться. До свидания, ребята. До новых встреч.
Информатика
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Алгоритм – исполнитель
Детальные инструкции значительно упрощают решение сложных задач для исполнителя. А пошаговые рекомендации позволяют автоматизировать процесс. Каждый такой алгоритм создается для определенного исполнителя. Если им будет маленький ребенок, команды будут одними, если взрослый человек – другими, компьютер или робот – третьими.
Примеры задач из жизни и люди, которые их обычно решают:
Если вопрос касается профессиональной сферы, то работники опираются на должностные и рабочие инструкции, в них описан круг обязанностей и порядок их выполнения. Если же это социальные задачи, люди ориентируются на то, как это делалось в семье их родителей, как это делают другие люди или как описано в литературе.
Виды исполнителей, их особенности
Одной из основных классификаций является деление исполнителей по отношению к тому, как они выполняют. Одушевленных называют неформальными, потому что они понимают, что делают, могут анализировать и даже видоизменять команды при изменении условий. Неодушевленных – формальными исполнителями, так как они строго выполняют команды, механически, не понимая, что делают, не задумываясь над задачей или промежуточными итогами.
Хорошим примером формального исполнителя является любая программируемая система, иногда даже человек, который подходит к выполнению определенных задач бездумно, как робот, не только не волнуясь о результате, и не анализируя происходящее.
Алгоритм пишут, учитывая особенности того, для кого он предназначен. Для некоторых людей сухого набора команд мало, им нужны дополнительные инструменты (изображения, примеры). Инструкция будет разной, если написана она для конкретного Игоря Козакова или для учеников 6-класса. Точно также команды для бездомной собаки Жуля будут одни, а для дрессированных полицейских овчарок – другие.
Характеристики исполнителей
Перед написанием алгоритма следует определиться не только с конечной задачей, но и с особенностями исполнителей. Это позволит использовать правильные слова, а также учесть все факторы, которые могут повлиять на конечный результат.
СКИ – набор простейших команд, понятных данному исполнителю.
Перспективными исполнителями являются роботы, автоматы и компьютеры. Несмотря на формальность работы, их можно запрограммировать и «научить» очень и очень многому. Даже если это светофор, стиральная машинка, не говоря уже о роботах, космических кораблях, персональных или научных компьютерах.
Особенно удивительно выглядит компьютер, ведь он:
Пользователи ПК могут использовать готовые приложения, чтобы задать ту или иную команду своему смартфону, компьютеру или другой умной технике. Или же самостоятельно написать «внутренности», программный код, задавая приложению те характеристики и функции, которые нужны.
Учебная среда Исполнителя
Для того, что сделать мир программирования и алгоритмизации ярким и веселым, были разработаны различные приложения. Существует учебная среда Исполнитель Кумир для учащихся, в которую входят Чертежник, Робот, Редактор и другие.
Различные приложения отличаются интерфейсом и набором команд, но общий принцип у них одинаковый – пользователь учится писать инструкции для компьютерного исполнителя (робот, черепашка, чертежник и другие). Он дает ему команды, изучая программирование от единичных заданий, постепенно переходя от элементарных линейных алгоритмов до циклических с условиями. Обучение проходит в игровой форме, при помощи кнопок. Далее этап написания команд на русском языке. На финальном этапе ученик осваивает СКИ на языке программирования (на английском).
Если ученик/пользователь дает задание исполнителю, которое невозможно выполнить физически (непреодолимое препятствие), математически (деление на ноль) – запускается система отказов.
Сравнительная характеристика основных приложений:
Исполнитель «Черепашка»
При помощи простых команд и красочного интерфейса пользователь легко освоит построение алгоритмов. На первом этапе в игровой форме, используя готовые кнопки и цвета. На следующем уровне уже можно программировать, записывая команды на русском по всем правилам программирования.
Исполнитель «Робот»
На клеточном поле произвольно выставляется робот, который обозначается любым удобным символом (*, Р, ●, ♦, другими). Задания пишутся при помощи системы команд исполнителя Робот.
В этой учебной системе можно самому рисовать стены, выращивать клумбы, задавать маршрут прохождения. Можно закрашивать клетки, даже если они до этого были цветные. Делать это можно при помощи линейных алгоритмов, с разветвлением или с повторением цикличных команд.
Для программирования используются простейшие алгоритмы и элементы программирования (правила написания команд, условия, обязательные символы), которые применяются в большинстве компьютерных языков.
В случае ошибок система выдает отказ. Отказы могут быть в случае неправильного написания элемента программы, противоречивых команд или логических ошибок. Отказ в виде ответа Робота: «Не могу» (пройти через стену), «Не понимаю» (ошибочно написана команда) или результат не тот, что нужен (перепутаны горизонталь и вертикаль).
Составляем алгоритм для Робота
Как видно из этого примера, в некоторых случаях команды многократно повторяются. Тогда используют подзадачи и циклы.
Основная программа с именем подзадачи:
Алгоритм Рисунок
Начало
Алгоритм Узор (5 раз);
Конец.
Указав только имя подзадачи в теле программы, пользователь вызывает ее столько раз, сколько указано в скобках. Полный текст вспомогательного алгоритма описывается под основным.
Алгоритм Узор
Начало
конец.
Если не использовать подзадачи, которые повторяются много раз, то размер программы увеличится в десятки раз.
Чтобы выполнить движение, робот может выполнять команды проверки наличия стены на пути: Сверху/снизу/слева/справа свободно?
Используя условие «если», робот проверяет дорогу и только тогда идет:
(Снизу_свободно), то вниз (3)
Или условие «пока» есть куда идти (нет стены сверху), робот будет идти прямо вверх и сажать цветы.
Исполнитель «Чертежник»
Учебная система «Исполнитель Чертежник» используется для рисования графиков, чертежей в системе координат (x;y). Поле поделено на пиксели, в параметрах можно указать размер поля и количество точек по осям.
Перо – инструмент чертежника, его, как настоящее, можно поднимать и опускать на рисовальное поле, перемещать в нужное место, менять цвет и добавлять надпись. Если перо приподнято, то не остается следа, если опущено – за ним тянется линия.
Во время рисования видно труженика Чертежника, который выполняет команды. Но его иконку можно скрыть, тогда будет виден только карандаш.
Начинать работу следует с команды «использовать Чертежник». Писать можно одиночные команды, а можно целые серии. Правила написания программы соответствуют основам большинства компьютерных языков. Это облегчит в будущем изучение программированию, улучшит понимание процесса построения алгоритмов, начиная от линейных и заканчивая циклическими.
На следующем этапе можно перейти к написанию алгоритма на языке Pascal. Процесс построения аналогичен, только команды пишутся на языке программирования (на английском):
uses Drawman;
begin
PenUp;
ToPoint (1, 1);
PenDown;
ToPoint (1, 5);
ToPoint (3, 5);
ToPoint (2, 4);
ToPoint (3, 3);
ToPoint (1, 3);
end.
Освоив построение алгоритмов на родном языке, запомнив правила написания команд, пользователь с легкостью перейдет на задания, написанные на языке программирования.
Вспомогательные алгоритмы или процедуры
Во время работы с учебными исполнителями приходится часто выполнять однотипные команды или серии команд. Намного удобнее создать вспомогательные подзадачи или процедуры. Таким блокам команд присваивается имя и потом не нужно каждый раз повторять ту или иную последовательность операций, достаточно указать имя вспомогательной процедуры.
Процедуры, их характеристики: