кьюриосити это значит что

Марсоход «Кьюриосити». Интересные факты

кьюриосити это значит что. Смотреть фото кьюриосити это значит что. Смотреть картинку кьюриосити это значит что. Картинка про кьюриосити это значит что. Фото кьюриосити это значит что

Марсианская научная лаборатория (MSL), и ее главный инструмент — марсоход «Кьюриосити» — самая амбициозная миссия на Марс, которую осуществило NASA. Марсоход опустился на поверхность Марса в 2012 году чтобы выяснить, подходит ли эта планета для жизни. Другая его цель — узнать как можно больше об окружающей среде Красной планеты.

В марте 2018 года «Кьюриосити» отпраздновал юбилей — 2000 марсианских дней он пробыл на Красной планете, постепенно продвигаясь из Кратера Гейл к горе Эолис (в разговорной речи используется название гора Шарп), изучая в процессе геологические свойства Марса. По пути марсоход обнаружил обширные свидетельства существования в прошлом на поверхности Марса жидкой воды, а также признаки глобальных геологических изменений.

Космический внедорожник

Одна из особенностей, которая отличает «Кьюриосити» от его собратьев, — его размер. Марсоход имеет габариты небольшого внедорожника. Это 3 метра 28 сантиметров в длину и около 2.1 метра в высоту. Вес «Curiosity» составляет около 900 килограммов. Колеса имеют диаметр 50,8 см.

Инженеры Лаборатории реактивного движения НАСА разработали марсоход, способный преодолевать препятствия высотой до 65 см и расстояния около 200 м. в день. Питание аппарата осуществляется от радиоизотопного термоэлектрического генератора (РИТЭГ), который производит электричество из тепла, выделяемого при радиоактивном распаде плутония-238.

Цели миссии

По утверждению НАСА, «Кьюриосити» имеет четыре основные научные цели:

Эти цели тесно взаимосвязаны. Например, понимание нынешнего климата Марса также поможет определить, смогут ли люди безопасно исследовать его поверхность. Изучение геологии Марса поможет ученым лучше понять, была ли область вблизи места посадки «Кьюриосити» в прошлом пригодной для жизни. Чтобы лучше справиться с этими глобальными целями, НАСА разбило научные задачи на восемь меньших целей: от изучения биологии до геологии планетарных процессов.

Для решения поставленных задач «Кьюриосити» располагает набором специальных инструментов.

Они включают в себя:

Рискованная посадка

Марсоход, запущенный с мыса Канаверал, штат Флорида, 26 ноября 2011 года, прибыл на Марс 6 августа 2012 года после рискованной и сложной посадки, которую НАСА окрестило «Семь минут террора». Из-за серьезного веса «Кьюриосити» НАСА пришло к выводу, что предыдущий метод, использовавшийся для посадки марсохода на Красную планету, вероятно, не сработает. Вместо этого аппарат прошел через чрезвычайно сложную последовательность маневров, прежде чем оказался на поверхности.

После входа в атмосферу Марса и окончание «огненной» фазы посадки, был выпущен сверхзвуковой парашют, необходимый для замедления скорости космического аппарата. Представители НАСА заявили, что парашют должен был выдерживать усилие в 29 480 кг, чтобы снизить скорость падения космического аппарата на поверхность.

Находясь под парашютом, MSL сбросил нижнюю часть теплозащитного экрана, чтобы получить возможность использовать радар с целью определения своей высоты. Парашют мог замедлить скорость MSL только до 322 км/ч, что было бы слишком много для успешной посадки. Чтобы решить эту проблему, инженеры спроектировали конструкцию, которая отстреливала парашют и использовала ракетные двигатели в заключительной части полета.

На высоте около 18 метров над поверхностью Марса был развернут посадочный узел MSL. Он опустил марсоход на поверхность, поддерживая свое положение с помощью ракетных двигателей, используя 6 метровые тросы. Опускаясь со скоростью 2,4 км/ч, MSL осторожно коснулся поверхности в Кратере Гейл. Примерно в тот же самый момент посадочный узел разорвал связь и отлетел в сторону, врезавшись в поверхность.

Инструменты для поиска признаков жизни

У марсохода есть несколько инструментов для поиска жизни. Среди них — прибор, бомбардирующий поверхность планеты нейтронами, которые будут замедляться, если столкнутся с атомами водорода — одним из элементов составляющих воду.

Двухметровый внешний манипулятор «Кьюриосити» может собирать образцы с поверхности для проведения их анализа, обнаружения газов, которые входят в их состав, и изучения их для получения информации о том, как образовались марсианские камни и почва.

Инструмент по анализу проб, если он действительно обнаружит доказательства существования органического материала, сможет перепроверить находку. На лицевой стороне «Curiosity», под крышками из фольги, находятся несколько керамических блоков, наполненных искусственными органическими соединениями.

«Кьюриосити» может просверлить любой из этих блоков и поместить образец в свою «печку» для измерения его состава. Таким образом исследователи поймут, соответствуют ли признаки наличия органики, обнаруженные на Марсе, тем признакам органики, которые получаются при нагревании образцов, заложенных на марсоходе на Земле. Если признаки совпадут, ученые, скорее всего, посчитают, что их вызвали организмы, прилетевшие на Марс с Земли без билета.

Камеры с высоким разрешением, установленные на марсоходе, делают фотографии по мере перемещения аппарата, обеспечивая ученых визуальной информацией, которую дает возможность сравнить условия Марса с окружающей средой на Земле.

В сентябре 2014 года марсоход прибыл к своей научной цели, Горе Шарп (Aeolis Mons). «Кьюриосити» начал тщательно изучать слои на склоне, когда приступил к движению вверх по горе. Цель его состояла в том, чтобы понять, как климат Марса изменился с влажного в далеком прошлом до более сухого и кислотного в наши дни.

Доказательства жизни: органические молекулы и метан

Основная задача миссии — определить, подходит ли Марс для жизни. Хотя марсоход и не предназначен для поиска самой жизни, он имеет на своем борту ряд инструментов, которые могут анализировать информацию об окружающей среде.

Ученые были весьма озадачены в начале 2013 года, когда марсоход передал информацию, показывающую, что на Марсе были условия для существования жизни в прошлом.

Порошок из первых образцов, которые были получены «Кьюриосити», содержал элементы серу, азот, водород, кислород, фосфор и углерод, которые считаются «строительными блоками» или фундаментальными элементами, необходимыми для поддержания жизни. Хотя их наличие и не свидетельствует о самой жизни, находка все равно была интересна ученым, участвовавшим в миссии.

«Основной вопрос для этой миссии заключается в том, мог ли Марс поддерживать потенциально обитаемую среду в прошлом», — заявил Майкл Майер, ведущий научный сотрудник Исследовательской программы NASA «Марс». «Из того, что мы знаем сейчас, ответ — «да».

«Кьюриосити» также выполнил первую окончательную идентификацию органических веществ на Марсе, об этом было объявлено в декабре 2014 года. Органические вещества считаются строительными блоками жизни, но не обязательно указывают на ее существование, поскольку они также могут быть созданы посредством химических реакций.

Изучение окружающей среды

Помимо выяснения пригодности Марса для проживания, у марсохода есть другие инструменты на борту, предназначенные для того, чтобы узнать больше об окружающей среде Марса. Среди целей для этих инструментов — постоянный мониторинг метеорологических и радиационных условий. Это позволит определить, насколько подходящим будет Марс для возможной пилотируемой миссии.

Анализатор радиационной обстановки марсоход работает в течение 15 минут каждый час для измерения уровня излучения на поверхности планеты и в ее атмосфере. Ученые, в частности, заинтересованы в измерении «вторичных лучей» — излучения, которое могут генерировать частицы с низкой энергией после попадания в молекулы газа в атмосфере. Гамма-лучи или нейтроны, образующиеся в результате этого процесса, могут представлять риск для человека. Кроме того, ультрафиолетовый датчик, находящийся на «Кьюриосити», также непрерывно отслеживает уровень УФ излучения.

В декабре 2013 года НАСА определило, что радиационные уровни, измеренные марсоходом, не будут препятствовать пилотируемой миссии на Марс в будущем.

Станция мониторинга окружающей среды марсохода измеряет скорость ветра и диаграмму его направления, а также определяет температуру и влажность в окружающем воздухе. В 2016 году ученые смогли оценить долгосрочные тенденции изменения атмосферного давления и влажности воздуха на Марсе. Некоторые из этих изменений происходят, когда полярные шапки, состоящие из диоксида углерода, начинают таять весной, выбрасывая огромное количество влаги в атмосферу.

В июне 2017 года НАСА объявила, что у «Кьюриосити» появилось новое обновление программного обеспечения, которое позволит ему самостоятельно выбирать цели для работы. Обновление, называемое AEGIS, представляет собой первый случай, когда искусственный интеллект был развернут на удаленном космическом аппарате.

В начале 2018 года «Кьюриосити» отправил на Землю фотографии кристаллов, которые могли образоваться в древних озерах на Марсе. По этому поводу существует множество гипотез, и одна из них заключается в том, что эти кристаллы образуются после того, как соли концентрируются в испаряющемся водяном озере.

Будущие миссии

Следует отметить, что марсоход не в одиночку работает на Красной планете. Сопровождает его целая «команда» из других космических аппаратов, созданных разными странами, часто работающих совместно в целях развития науки. Космический орбитальный аппарат NASA «Mars Reconnaissance Orbiter» обеспечивает получение изображений с высоким разрешением поверхности. Еще один спутник NASA под названием MAVEN (миссия Mars Atmosphere и Volatile EvolutioN) исследует атмосферу Марса для изучения атмосферных потерь и других интересных явлений. Другие орбитальные миссии включают в себя «Марс-Экспресс», европейский орбитальный модуль «ExoMars», а также орбитальную миссию Индии.

В отдаленной перспективе НАСА заявляет об отправке пилотируемой миссии на Марс — возможно, в 2030-х годах. Однако финансирования для проведения этих работ правительство США пока не предусмотрело. Вполне вероятно, что первыми на Марсе окажутся представители частных компаний, например «Space-X». Это означает, что первым общественно — политическим строем колонии на Марсе станет развитый капитализм. Хотя китайцы, учитывая огромное население и необходимость расширения своего жизненного пространства, вполне могут удивить. Как говорится — поживем, увидим…

Источник

Подробно о космическом: что и зачем сейчас делает марсоход Curiosity? (5 фото)

Перед нами пустыня, голая и безжизненная. Горизонт обозначен кромкой кратера, в центре поднимается пятикилометровая вершина. Прямо у наших ног блестят колеса и панели марсохода. Не пугайтесь: мы в Лондоне, где уникальная Обсерватория данных позволяет геологам перенестись в марсианскую пустыню и работать бок о бок с Curiosity, самым сложным роботом, который когда-либо отправлялся в космос.
Светящаяся на мониторах панорама составлена из кадров, присланных марсоходом на Землю. Голубое небо не должно обманывать: на Марсе оно тускло-желтое, но человеческому глазу привычнее оттенки, которые создаются светом, рассеянным нашей земной атмосферой. Поэтому снимки проходят обработку и отображаются в ненатуральных цветах, позволяя спокойно рассмотреть каждый камешек. «Геология — наука полевая, — объяснил нам профессор Имперского колледжа Лондона Санджев Гупта. — Мы любим пройтись по земле с молотком. Налить кофе из термоса, рассмотреть находки и отобрать самое интересное для лаборатории». На Марсе нет ни лабораторий, ни термосов, зато туда геологи отправили Curiosity, своего электронного коллегу. Соседняя планета интригует человечество давно, и чем больше мы ее узнаем, чем чаще обсуждаем будущую колонизацию, тем серьезнее основания для этого любопытства.

Когда-то Земля и Марс были очень похожи. Обе планеты имели океаны жидкой воды и, видимо, достаточно простой органики. И на Марсе, как на Земле, извергались вулканы, клубилась густая атмосфера, однако в один несчастливый момент что-то пошло не так. «Мы стараемся понять, каким было это место миллиарды лет назад и почему оно настолько изменилось, — сказал профессор геологии из Калифорнийского технологического института Джон Грётцингер в одном из интервью. — Мы полагаем, что там была вода, но не знаем, могла ли она поддерживать жизнь. А если могла, то поддерживала ли. Если и так, то неизвестно, сохранились ли хоть какие-то свидетельства в камнях». Выяснить все это и предстояло геологу-марсоходу.

кьюриосити это значит что. Смотреть фото кьюриосити это значит что. Смотреть картинку кьюриосити это значит что. Картинка про кьюриосити это значит что. Фото кьюриосити это значит что

Curiosity регулярно и тщательно фотографируется, позволяя осмотреть себя и оценить общее состояние. Это «селфи» составлено из снимков, сделанных камерой MAHLI. Она расположена на трехсуставном манипуляторе, который при объединении снимков оказался почти не виден. В кадр не попали находящиеся на нем ударная дрель, ковшик для сбора рыхлых образцов, сито для их просеивания и металлические щеточки для очистки камней от пыли. Не видны также камера для макросъемки MAHLI и рентгеновский спектрометр APXS для анализа химического состава образцов.
1. Мощным системам ровера солнечных батарей не хватит, и питание ему обеспечивает радиоизотопный термоэлектрогенератор (РИТЭГ). 4,8 кг диоксида плутония-238 под кожухом ежедневно поставляют 2,5 КВт·ч. Видны лопасти охлаждающего радиатора.
2. Лазер прибора ChemCam выдает по 50−75 наносекундных импульсов, которые испаряют камень на расстоянии до 7 м и позволяют анализировать спектр получившейся плазмы, чтобы установить состав цели.
3. Пара цветных камер MastCam ведет съемку через различные ИК-светофильтры.
4. Метеостанция REMS следит за давлением и ветром, температурой, влажностью и уровнем ультрафиолетового излучения.
5. Манипулятор с комплексом инструментов и приборов (не виден).
6. SAM — газовый хроматограф, масс-спектрометр и лазерный спектрометр
для установления состава летучих веществ в испаряемых образцах и в атмосфере.
7. CheMin выясняет состав и минералогию измельченных образцов по картине дифракции рентгеновских лучей.
8. Детектор радиации RAD заработал еще на околоземной орбите и собирал данные на протяжении всего перелета к Марсу.
9. Детектор нейтронов DAN позволяет обнаруживать водород, связанный в молекулах воды. Это российский вклад в работу марсохода.
10. Кожух антенны для связи со спутниками Mars Reconnaissance Orbiter (около 2 Мбит/с) и Mars Odyssey (около 200 Мбит/с).
11. Антенна для прямой связи с Землей в Х-диапазоне (0,5−32 кбит/с).
12. Во время спуска камера MARDI вела цветную съемку с высоким разрешением, позволив детально рассмотреть место посадки.
13. Правая и левая пары черно-белых камер Navcams для построения 3D-моделей ближайшей местности.
14. Панель с чистыми образцами позволяет проверить работу химических анализаторов марсохода.
15. Запасные биты для дрели.
16. В этот лоток ссыпаются подготовленные образцы из ковшика для изучения макрокамерой MAHLI или спектрометром APXS.
17. 20-дюймовые колеса с независимыми приводами, на титановых пружинящих спицах. По следам, оставленным рифлением, можно оценить свойства грунта и следить за движением. Рисунок включает буквы азбуки Морзе — JPL.

Свирепый Марс — несчастливая цель для космонавтики. Начиная с 1960-х к нему отправилось почти полсотни аппаратов, большинство из которых разбилось, отключилось, не сумело выйти на орбиту и навсегда сгинуло в космосе. Однако усилия не были напрасны, и планету изучали не только с орбиты, но даже с помощью нескольких планетоходов. В 1997 году по Марсу проехался 10-килограммовый Sojourner. Легендой стали близнецы Spirit и Opportunity: второй из них героически продолжает работу уже больше 12 лет подряд. Но Curiosity — самый внушительный из них, целая роботизированная лаборатория размером с автомобиль.

6 августа 2012 года спускаемый модуль Curiosity выбросил систему парашютов, которые позволили ему замедлиться в разреженной атмосфере. Сработали восемь реактивных двигателей торможения, и система тросов осторожно опустила марсоход на дно кратера Гейла. Место посадки было выбрано после долгих споров: по словам Санджева Гупты, именно здесь нашлись все условия для того, чтобы лучше узнать геологическое — видимо, весьма бурное — прошлое Марса. Орбитальные съемки указали на наличие глин, появление которых требует присутствия воды и в которых на Земле неплохо сохраняется органика. Высокие склоны горы Шарпа (Эолиды) обещали возможность увидеть слои древних пород. Довольно ровная поверхность выглядела безопасной. Curiosity успешно вышел на связь и обновил программное обеспечение. Часть кода, использовавшегося при перелете и посадке, заменилась новой — из космонавта марсоход окончательно стал геологом.
Год первый: cледы воды

Вскоре геолог «размял ноги» — шесть алюминиевых колес, проверил многочисленные камеры и протестировал оборудование. Его коллеги на Земле рассмотрели точку посадки со всех сторон и выбрали направление. Путь до горы Шарпа должен был занять около года, и за это время предстояло немало работы. Прямой канал связи с Землей не отличается хорошей пропускной способностью, но каждый марсианский день (сол) над марсоходом пролетают орбитальные аппараты. Обмен с ними происходит в тысячи раз быстрее, позволяя ежедневно передавать сотни мегабит данных. Ученые анализируют их в Обсерватории данных, рассматривают снимки на экранах компьютеров, выбирают задачи на следующий сол или сразу на несколько и отправляют код обратно на Марс.
Работая практически на другой планете, многие из них вынуждены сами жить по марсианскому календарю и подстраиваться под чуть более длинные сутки. Сегодня для них — «солдня» (tosol), завтра — «солвтра» (solmorrow), а сутки — просто сол. Так, спустя 40 солов Санджев Гупта выступил с презентацией, на которой объявил: Curiosity движется по руслу древней реки. Мелкая, обточенная водой каменная галька указывала на течение со скоростью около 1 м/с и глубину «по щиколотку или по колено». Позднее были обработаны и данные с прибора DAN, который для Curiosity изготовила команда Игоря Митрофанова из Института космических исследований РАН. Просвечивая грунт нейтронами, детектор показал, что до сих пор на глубине в нем сохраняется до 4% воды. Это, конечно, суше, чем даже в самой сухой из земных пустынь, но в прошлом Марс все-таки был полон влаги, и марсоход мог вычеркнуть этот вопрос из своего списка.

кьюриосити это значит что. Смотреть фото кьюриосити это значит что. Смотреть картинку кьюриосити это значит что. Картинка про кьюриосити это значит что. Фото кьюриосити это значит что

В центре кратера
64 экрана высокого разрешения создают панораму охватом 313 градусов: Обсерватория данных KPMG в Имперском колледже Лондона позволяет геологам перенестись прямо в кратер Гейла и работать на Марсе почти так же, как на Земле. «Посмотрите поближе, вот здесь тоже следы воды: озеро было довольно глубоким. Конечно, не таким, как Байкал, но достаточно глубоким», — иллюзия была настолько реальной, что казалось, будто профессор Санджев Гупта перепрыгивал с камня на камень. Мы посетили Обсерваторию данных и пообщались с ученым в рамках мероприятий Года науки и образования Великобритании и России — 2017, организованного Британским советом и посольством Великобритании.
Год второй: cтановится опаснее

Свой первый юбилей на Марсе Curiosity встретил празднично и сыграл мелодию «С днем рожденья тебя», меняя частоту вибраций ковшика на своем тяжелом 2,1-метровом манипуляторе. Ковшиком «роборука» набирает рыхлый грунт, ровняет, просеивает и ссыпает немного в приемники своих химических анализаторов. Бур с полыми сменными битами позволяет работать с твердыми породами, а податливый песок марсоход может разворошить прямо колесами, открыв для своих инструментов внутренние слои. Именно такие эксперименты вскоре принесли довольно неприятный сюрприз: в местном грунте обнаружилось до 5% перхлоратов кальция и магния.

Вещества это не только ядовитые, но и взрывчатые, а перхлорат аммония и вовсе используется как основа твердого ракетного топлива. Перхлораты уже обнаруживались в месте посадки зонда Phoenix, однако теперь выходило, что эти соли на Марсе — явление глобальное. В ледяной бескислородной атмосфере перхлораты стабильны и неопасны, да и концентрации не слишком высоки. Для будущих колонистов перхлораты могут стать полезным источником топлива и серьезной угрозой здоровью. Но для геологов, работающих с Curiosity, они способны поставить крест на шансах обнаружить органику. Анализируя образцы, марсоход нагревает их, а в таких условиях перхлораты быстро разлагают органические соединения. Реакция идет бурно, с горением и дымом, не оставляя различимых следов исходных веществ.

кьюриосити это значит что. Смотреть фото кьюриосити это значит что. Смотреть картинку кьюриосити это значит что. Картинка про кьюриосити это значит что. Фото кьюриосити это значит что

Год третий: у подножия

Однако и органику Curiosity обнаружил — об этом было объявлено позже, после того как на 746-й сол, покрыв в общей сложности 6,9 км, марсоход-геолог добрался до подножия горы Шарпа. «Получив эти данные, я сразу подумал, что нужно все обязательно перепроверить», — сказал Джон Грётцингер. В самом деле, уже когда Curiosity работал на Марсе, выяснилось, что некоторые земные бактерии — такие как Tersicoccus phoenicis — устойчивы к методам уборки чистых комнат. Подсчитали даже, что к моменту запуска на марсоходе должно было остаться от 20 до 40 тыс. устойчивых спор. Никто не может поручиться, что какие-то из них не добрались с ним до горы Шарпа.

Для проверки датчиков имеется на борту и небольшой запас чистых образцов органических веществ в запаянных металлических контейнерах — можно ли стопроцентно уверенно сказать, что они остались герметичными? Однако графики, которые предъявили на пресс-конференции в NASA, сомнений не вызывали: за время работы марсианский геолог зафиксировал несколько резких — сразу в десять раз — скачков содержания метана в атмосфере. Этот газ вполне может иметь и небиологическое происхождение, но главное — когда-то он мог стать источником более сложных органических веществ. Следы их, прежде всего хлорбензол, обнаружились и в грунте Марса.
Годы четвертый и пятый: живые реки

К этому времени Curiosity пробурил уже полтора десятка отверстий, оставив вдоль своего пути идеально круглые 1,6-сантиметровые следы, которые когда-нибудь обозначат туристический маршрут, посвященный его экспедиции. Электромагнитный механизм, заставлявший дрель совершать до 1800 ударов в минуту для работы с самой твердой породой, вышел из строя. Однако изученные выходы глин и кристаллы гематита, слои силикатных шпатов и прорезанные водой русла открывали уже однозначную картину: некогда кратер был озером, в которое спускалась ветвящаяся речная дельта.

Камерам Curiosity теперь открывались склоны горы Шарпа, сам вид которых оставлял мало сомнений в их осадочном происхождении. Слой за слоем, сотнями миллионов лет вода то прибывала, то отступала, нанося породы и оставляя выветриваться в центре кратера, пока не ушла окончательно, собрав целую вершину. «Там, где сейчас возвышается гора, когда-то был бассейн, время от времени заполнявшийся водой», — пояснил Джон Грётцингер. Озеро стратифицировалось по высоте: условия на мелководье и на глубине различались и температурой, и составом. Теоретически это могло обеспечить условия для развития разнообразных реакций и даже микробных форм.

кьюриосити это значит что. Смотреть фото кьюриосити это значит что. Смотреть картинку кьюриосити это значит что. Картинка про кьюриосити это значит что. Фото кьюриосити это значит что

Цвета на трехмерной модели кратера Гейла соответствуют высоте. В центре расположена гора Эолида (Aeolis Mons, 01), которая на 5,5 км возвышается над одноименной равниной (Aeolis Palus, 02) на дне кратера. Отмечено место посадки Curiosity (03), а также долина Фарах (Farah Vallis, 04) — одно из предполагаемых русел древних рек, впадавших в ныне исчезнувшее озеро.
Путешествие продолжается

Экспедиция Curiosity далеко не закончена, да и энергии бортового генератора должно хватить на 14 земных лет работы. Геолог остается в пути уже почти 1750 солов, преодолев больше 16 км и поднявшись по склону на 165 м. Насколько могут заглянуть его инструменты, выше по‑прежнему видны следы осадочных пород древнего озера, но как знать, где они кончаются и на что еще укажут? Робот-геолог продолжает восхождение, а Санджев Гупта и его коллеги уже выбирают место для посадки следующего. Несмотря на гибель спускаемого зонда Schiaparelli, орбитальный модуль TGO в прошлом году благополучно вышел на орбиту, запустив первый этап европейско-российской программы «Экзомарс». Марсоход, который должен стартовать в 2020 году, станет следующим.

Российских приборов в нем будет уже два. Сам робот примерно вдвое легче Curiosity, зато его бур сможет забирать пробы с глубины уже до 2 м, а комплекс приборов Pasteur включит инструменты для прямого поиска следов прошлой — или даже сохранившейся до сих пор — жизни. «У вас есть заветное желание, находка, о которой вы особенно мечтаете?» — спросили мы профессора Гупту. «Безусловно, есть: окаменелость, — ученый ответил не раздумывая. — Но это, конечно, вряд ли произойдет. Если жизнь там и была, то только какие-нибудь микробы… Но ведь, согласитесь, это стало бы чем-то невероятным».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *