лампа лосева для чего используется
Свечение Лосева
Привычные всем светоизлучающие диоды, по мнению большинства энциклопедических источников, появились в 1962 году, вскоре после изобретения полупроводникового лазера. Однако светодиоды появились гораздо раньше в результате работ советского изобретателя Олега Владимировича Лосева.
В последнем выпуске Nature Photonics вышла статья, посвяшенная столетию оптоэлектроники.
Впервые явление свечения при прохождении тока через полупроводники наблюдал Генри Раунд (Henry Round), работавший в то время ассистентом Маркони. Он опубликовал в 1907 году короткую
Имя Олега Владимировича Лосева сегодня известно разве что узкому кругу специалистов. А жаль: его вклад в науку, в развитие радиотехники таков, что дает право этому ученому-подвижнику на благодарную память потомков.
Наступил революционный 1917 год. Лосев в это время заканчивает среднюю школу. Он мечтает стать радиотехником. Но для этого необходимо получить специальное образование, и он подает документы в Московский институт связи.
Лосев проверяет чистоту поверхности и внешнее строение кристаллов, в различных режимах изучает вольт-амперные характеристики детекторов и оценивает влияющие на них факторы.
Молодой исследователь не покидает Нижегородскую лабораторию сутками: днем проводит эксперименты, ночью занимает “свое место” на площадке третьего этажа, перед выходом на чердак, где стоит его кровать, а одеялом служит легкое пальто. Таким был “комфорт” начала 20-х годов.
Множество материалов испробовал Лосев в качестве рабочего кристалла. Лучшим оказался облагороженный цинкит, получаемый сплавлением в электрической дуге естественных цинкитных кристаллов или чистой окиси цинка. Контактным волоском служила стальная игла.
Свечение многократно изучалось на различных материалах, а разных температурных условиях и электрических режимах, рассматривалось под микроскопом. Лосеву становилось все более очевидным, что он имеет дело с открытием. “ Вероятнее, что здесь происходит совершенно своеобразный электронный разряд, не имеющий, как показывает опыт, накаленных электродов ”, пишет он в очередной статье. Итак, новизна, неизвестность науке открытого свечения для Лосева бесспорна, но понимания физической сущности явления еще нет.
Формулировалось несколько версий по поводу физических причин открытого свечения. Одну из них он высказывает в той же статье: “ Вероятнее всего, кристалл светится от электронной бомбардировки аналогично свечению различных минералов в круксовых трубках ”. Позже, проверяя это объяснение, Лосев помещает различные кристаллы в катодо-люминесцентную трубку и при облучении их сравнивает спектры и силу излучаемого света с аналогичными характеристиками детекторного свечения. Обнаруживается значительное сходство, но вопрос о четком понимании физики явления, по словам Лосева, остается открытым. Все усилия ученый сосредоточивает на глубоком и детальном изучении светящегося карборундового детектора.
Экспериментируя с различными сортами кристаллов и разными контактными проволоками, О. В. Лосев делает два важнейших вывода: свечение происходит без выделения тепла, то есть является “холодным”, инерция возникновения и потухания свечения чрезвычайно мала, то есть оно практически безынерционно. Теперь мы знаем: эти характеристики свечения, отмеченные Лосевым в 20-е годы, являются важнейшими для сегодняшних светодиодов, индикаторов, оптронов, излучателей инфракрасного света.
Споры о светодиоде
Представляем вашему вниманию главу из книги Тима Скоренко «Изобретено в СССР: История изобретательской мысли с 1917 по 1991 год».
Если вы читали книгу «Изобретено в России», то могли обратить внимание на то, что многие изобретения являются совместными. Нет ка- кого-то одного изобретателя радио, самолёта или лампы накаливания. Эти технологические прорывы стали плодами многолетней работы десятков, а то и сотен человек, каждый из которых вкладывал небольшую часть своих знаний и умений в общее дело. Иногда, как в случае с радио, изобретение складывалось в чёткую цепочку — от немца Герца до канадца Фессендена, — которая бы рассыпалась при потере любого из звеньев (Попов был важным звеном).
Собственно, к подобным изобретениям относится и диод. Открытия и разработки множества учёных и инженеров привели к появлению на свет этой технологии, а назвать единственного изобретателя диода попросту невозможно. Одно лишь то, что Нобелевскую премию за связанные с диодами исследования присуждали дважды (!), говорит о многом. Но давайте обратимся к истокам.
Что такое диод?
Светодиод, также хорошо известный по латинской аббревиатуре LED (light-emitting diode), — это прибор, который испускает свет при пропускании через него электрического тока. Но принцип его работы коренным образом отличается, например, от того, как работает нить накаливания, тоже светящаяся под воздействием тока. Диод не раскаляется и не разогревается, его свет холодный.
Диод — это полупроводниковый прибор. Полупроводники занимают промежуточное положение между проводниками, хорошо проводящими электрический ток, и диэлектриками, проводящими ток откровенно плохо. При этом электропроводность полупроводника сильно зависит от температуры: чем она выше, тем лучше полупроводники проводят электрический ток.
Для понимания работы полупроводникового диода нужно в первую очередь знать, как устроен механизм проводимости в кристаллах. Скажем, в металлах кристаллическую решётку образуют не нейтральные атомы, а положительно заряженные ионы — атомы, лишившиеся внешнего электрона. Одноимённо заряженные ионы отталкиваются друг от друга, но решётка не рассыпается, поскольку упомянутые электроны «отданы в общественную собственность» и при этом отрицательно заряжены, таким образом, они выполняют роль «цемента». А поскольку электроны являются носителями электрического заряда и легко перемещаются по всему объёму материала, то во внешнем электрическом поле они обуславливают электрический ток. Этим объясняется хорошая электропроводность металлов.
Решётка полупроводника устроена иначе. Внешние электроны атомов там не свободны, как в металлах, а задействованы в локальных связях между соседними атомами («привязаны» к ним). Поскольку свободных носителей заряда в полупроводнике в этих условиях нет, он плохо проводит электрический ток. Но если мы поднимем температуру на достаточную величину, энергия тепловых колебаний атомов в решётке возрастёт и может превысить порог, при котором связи между соседними атомами будут разорваны и в полупроводнике появятся свободные электроны (электроны проводимости), благодаря которым он начнёт проводить электрический ток. Порог этот зависит от типа материала, в полупроводниках он достаточно низкий, чтобы даже не очень сильное нагревание резко повысило электропроводность (а в диэлектриках весьма высокий, поэтому их электропроводность очень низкая и не зависит от температуры).
Если связь между соседними атомами в кристаллической решётке полупроводника разрывается, образуется электрон проводимости. Для восстановления разорванной связи на его место может перескочить электрон соседнего атома, что приведёт к разрыву соответствующей связи. Если приложить к полупроводнику внешнее электрическое поле, разорванная связь будет «двигаться» точно таким же образом, как и электрон, только в противоположном направлении. Такую связь называют «дыркой», она считается квазичастицей (то есть ведёт себя как частица, хотя таковой физически не является) и носителем положительного заряда (а электрон, напомню, отрицательного).
Полупроводники обладают ещё одним характерным свойством: их способность проводить электрический ток сильно зависит не только от температуры, но и от очень малого количества примесей (один примесный атом на миллион атомов полупроводника или даже меньше). Причём разные примеси дают полупроводникам различные свойства: примеси-доноры, например мышьяк, привносят избыточные электроны проводимости (это называется полупроводник n-типа), примеси-акцепторы, например бор, создают избыток дырок (это полупроводник p-типа).
Если внутри одного кристалла создать полупроводники p-типа и n-типа, то электроны и дырки устремятся в области, где их концентрация меньше, и на границе (она называется p-n переходом) образуется двойной заряженный слой из дырок и электронов. Этот p-n переход обладает особыми свойствами. В частности, при приложении электрического напряжения он пропускает постоянный ток только в одну сторону (а в другую — нет). Это и есть диод. Кроме того, при встрече дырки и электрона в p-n переходах некоторых полупроводников происходит их исчезновение (рекомбинация) с рождением фотонов, то есть с излучением света — так работает светодиод.
Длина волны света при этом зависит от состава полупроводника. Существуют светодиоды практически для всех областей спектра — от инфракрасного до ультрафиолетового.
А теперь — к истории.
Раунд и Лосев
В 1907 году английский естествоиспытатель Генри Джозеф Раунд, сотрудник Marconi Labs и личный ассистент самого Маркони, обнаружил занятный эффект. Он работал над кристаллическими детекторами для радиоприёмников, а такие детекторы обычно представляют собой кристалл полупроводника, контактирующий с металлической проволокой. Раунд изучал различные материалы, применил в качестве полупроводника карбид кремния и зафиксировал странный побочный эффект — ярко-жёлтое свечение в точке контакта. Это наблюдение он опубликовал в нью-йоркском журнале Electrical World, но дальше в своих исследованиях не продвинулся.
Вплоть до середины 1920-х об эффекте Раунда никто не вспоминал, по сути, открытие британца осталось не более чем мелким эпизодом в гигантской системе бурно развивающегося радио. Именно с радио началась и вторая глава этой истории — глава об Олеге Лосеве.
Олег Лосев родился в 1903 году в небогатой дворянской семье. Ещё мальчишкой он заинтересовался радио и подвизался подрабатывать на тверской радиостанции, где тогда работал гигант мысли, отец советской радиоламповой промышленности Михаил Бонч-Бруевич. В 1920-м Лосев поступил было в Московский институт связи (ныне Московский технический университет связи и информатики), но в том же году бросил его и уехал в Нижний Новгород. Туда за некоторое время до этого перевели старых знакомых Лосева — коллектив тверской радиостанции; 17-летний Лосев без образования устроился рассыльным, но через несколько месяцев благодаря усердию и таланту стал младшим научным сотрудником.
Лосев специализировался, как и ранее Раунд, на кристаллических детекторах, использовавшихся в радиоприёмниках тех лет. Он экспериментировал с различными материалами и в 1922 году сконструировал детекторный приёмник с кристаллами цинкита (оксида цинка), способный значительно усиливать сигнал и принимать очень слабые радиостанции. В те времена страна ещё не успела перессориться со всем миром; в нижегородскую лабораторию для обмена опытом приезжали немцы, это привело к тому, что публикации Лосева начали появляться за границей — в Германии, Франции, Великобритании. Сам приёмник получил европейское название Crystodyne, которое появилось и в российской прессе («Кристадин»). По сути, Лосев вплотную подошёл к открытию транзистора — полупроводникового прибора, основанного на комбинации p-n переходов и способного усиливать, генерировать или коммутировать электрические сигналы. Лосев лишь чуть-чуть не дотянул до настоящей радиореволюции.
Помешало в этом, как ни странно, его новое открытие: в 1923 году на паре «металл — карбид кремния» он наблюдал ровно тот же эффект, что и некогда Раунд, то есть электролюминесценцию. Эта тема затянула Лосева с головой, и он опубликовал по ней ряд статей в советских, немецких и американских журналах. В отличие от британского коллеги Лосев провёл множественные исследования эффекта, замеры, но ему не хватало ни оборудования, ни знаний. В конце концов, юному гению на тот момент исполнилось всего 20 лет и он был самоучкой.
Самое то ли странное, то ли страшное, что история Лосева закончилась… ничем. Он продолжал свои исследования, причём с течением времени так оторвался от основной тематики лаборатории, занимавшейся лампами, что вынужден был сменить место работы. Лосев получил множество патентов (первые три в один день, 31 августа 1925 года — «Детекторный радиоприёмник-гетеродин», «Устройство для нахождения генерирующих точек контактного детектора» и «Способ изготовления цинкитного детектора») — всего 16 штук с 1925 по 1934 год. С 1924-го по 1933-й он активно публиковался и в СССР, и за границей — его работы обсуждались мировым сообществом радиотехников, Лосева даже можно было назвать «широко известным в узких кругах». В числе его авторских свидетельств были и «световые реле», то есть, по сути, настоящие светодиоды. Но практического применения они не получили.
В 1937-м он устроился преподавателем в Ленинградский «Первый мед», затем с подачи Абрама Иоффе стал кандидатом физико-математических наук — но, по сути, это был конец карьеры ещё совсем молодого человека. Зарубежные связи в тот период осуждались, контактов с мировым научным сообществом практически не осталось, Лосев работал без перспективы. Он не стал эвакуироваться из блокадного Ленинграда и в 1942 году умер в госпитале мединститута от голода.
А первый функциональный транзистор был представлен американскими физиками Джоном Бардином, Уолтером Браттейном и Уолтером Шокли, сотрудниками Bell Labs, в 1947 году, всего через пять лет после смерти Лосева. Спустя ещё девять лет все трое получили за своё изобретение Нобелевскую премию.
Диод Лосева не получил продолжения — работу просто некому было продолжить, потому что Лосев всегда оставался талантливым одиночкой, самоучкой-экспериментатором. Существуют справедливые сомнения в том, что он смог бы создать полноценный транзистор без должной теоретической основы — а теорией он владел в недостаточной степени. Более того, сама теория полупроводников в годы активной работы Лосева фактически отсутствовала: даже наблюдая некое явление в эксперименте, исследователи вряд ли могли объяснить его причину. Наконец, Лосеву катастрофически не хватало необходимого оборудования, к тому же финансовая и политическая обстановка в стране была крайне трудной. В общем, довести исследования до высшей точки — транзистора — не позволил целый ряд факторов.
Поэтому и светодиод, и транзистор изобрели позже. И не у нас.
После Лосева
К исследованиям в области электролюминесценции мир вернулся лишь в 1950-х годах. Одним из первых этим вопросом заинтересовался чешский физик Курт Леговец, который вместе с коллегами, Карлом Аккардо и Эдвардом Джамгочяном, в 1951 году опубликовал теоретическую модель излучения света в полупроводниках — это было именно то, для объяснения чего Лосеву не хватило знаний. В 1955 — 1957 годах ряд работ и исследований по теме сделал физик Рубин Браунштейн из Radio Corporation of America, наблюдавший инфракрасное излучение при использовании антимонида галлия, арсенида галлия, фосфида индия и сплава кремния с германием.
А в сентябре 1961 года сотрудники Texas Instruments Джеймс Байард и Гэри Питтмен получили на арсениде галлия стабильное инфракрасное излучение с длиной волны 900 нанометров. Годом позже, в августе 1962 года, они подали патентную заявку на первый в истории функциональный полупроводниковый светоизлучающий диод (патент US3293513, выдан 20 декабря 1966 года). Уже в октябре 1962 года Texas Instruments анонсировала серийное производство светодиодов с длиной волны 890 нанометров — модель SNX-100.
Да, именно так. Ник Холоньяк оказался вторым. Он был сотрудником конкурирующей компании General Electric и опубликовал свою знаменитую статью о первом диоде видимого света в журнале Applied Physics Letters за декабрь 1962 года. Я не умаляю заслуг Холоньяка — он получил множество патентов и внёс неоценимый вклад в развитие светодиодных технологий, но номинально именно Байарда и Питтмена назвал бы изобретателями диода в классическом понимании термина «изобретатель».
Стоит заметить, что со светодиодами Лосев не столько опередил своё время, сколько опередил время, находясь не в том месте. В других условиях, в другом мире, в полноценной лаборатории, а не у себя дома, где он проводил большинство исследований, с командой сотрудников он бы довёл обе концепции до практической реализации, причём ещё до войны, намного раньше зарубежных коллег.
Но в науке, помимо таланта, знаний и финансирования, есть ещё один важный компонент. Он называется «удача».
masterok
Мастерок.жж.рф
Хочу все знать
Благодаря забытому ныне физику Олегу Лосеву у СССР был шанс создать полупроводниковые технологии намного раньше, чем США. В списке государств — лидеров в области полупроводниковых технологий Россия не значится. Между тем анализ истории науки однозначно свидетельствует в пользу того, что при более удачном стечении обстоятельств у Советского Союза были отличные шансы опередить остальной мир в этой технологической гонке.
В этом году исполнилось 91 год со дня создания первого в мире полупроводникового прибора, усиливавшего и генерировавшего электромагнитные колебания. Автором этого важнейшего изобретения был наш соотечественник, девятнадцатилетний сотрудник Нижегородской радиолаборатории Олег Владимирович Лосев. Его многочисленные открытия намного опередили время и, как это, к сожалению, часто случалось в истории науки, были практически забыты к моменту начала бурного развития полупроводниковой электроники.
Физик Олег Владимирович Лосев известен миру благодаря двум своим открытиям: он первый в мире показал, что полупроводниковый кристалл может усиливать и генерировать высокочастотные радиосигналы; он открыл электролюминесценцию полупроводников, т.е. испускание ими света при протекании электрического тока.
К сожалению, ученый не получил своевременно объективной оценки своих заслуг со стороны соотечественников. А ведь именно его работы подготовили открытие «транзисторного эффекта», за что профессор Иллинойского университета Джон Бардин в 1956 г. получил свою первую Нобелевскую премию. Да и в основе достижений наших отечественных ленинских и нобелевских лауреатов 1964 г. Николая Басова и Александра Прохорова и нобелевского лауреата 2001 г. Жореса Алфёрова лежат результаты фундаменталъно-прикладных исследований и разработок скромного подвижника науки ж техники — О.В.Лосева. Однако не много найдется людей, кто хоть вскользь прилюдно упомянул бы имя своего скромного предшественника. Пожалуй, только его старший коллега Б.А. Остроумов на сессии ВНТОРЭС в 1952 г. выступил с большим докладом «Советский приоритет в деле создания кристаллических электронных реле по работам О.В.Лосева». По этому докладу сессия предложила издать труды Лосева, доработать его научное наследие и внедрять полупроводники в практику. И уже в 1954 г. Был организован Институт полупроводников АН СССР, директором которого стал один из бывших научных руководителей О.В.Лосева — академик А. Ф. Иоффе.
Олег Лосев родился в Твери 10 мая 1903 г. По воспоминаниям друзей и знакомых Олега, отец его был конторский служащий на вагоностроительном заводе, мать — домохозяйка. О тверских его близких родственниках и знакомых пока сведении нет. Точно неизвестно как учился Олег вообще, но известно, что его очень интересовала физика, а его учитель физики Вадим Леонидович Лёвшин (1896-1969) — впоследствии академик, лауреат Сталинской премии 1951 г. — привил своему ученику интерес к научным исследованиям. «Заболел» радиотехникой Олег Лосев в 1916 г., после одной из первых лекций нового начальника Тверской радиостанции внешних сношений, штабс-капитана Владимира Лещинского. Тогда же он познакомился и с его помощником — поручиком Михаилом Бонч-Бруевичем и профессором Рижского политехникума Владимиром Лебединским. Последний часто приезжал в Тверь, чтобы поддерживать своих талантливых учеников и единомышленников в их новаторских устремлениях. Стал частым гостем на радиостанции и школьник Олег Лосев.
Тверская радиостанция внешних сношений появилась в Твери в 1914 году, т.е. в начале первой мировой войны для обеспечения оперативной связи России с её союзниками Англией и Францией. Тверская станция была приёмной и соединялась прямым проводом с обеими российскими столицами, где в Царском селе (под Петербургом) и на Ходынском поле (в Москве) также в спешном порядке были построены две однотипные стокиловаттные передающие станции искрового телеграфа. На территории станции были и два деревянных барака. Аппаратура радиостанции питалась от аккумуляторных батарей, для заряда которых в техническом оснащении станции был предусмотрен бензодвижок с динамо-машиной. Потому электроосвещение на станции действовало только тогда, когда подзаряжался аккумулятор. Кроме того, собственно аппаратура станции была весьма ненадёжна, и, прежде всего, из-за невысокого качества тогдашних, к тому же, и очень дорогих французских радиоламп. Однако ещё хуже были лампы отечественного производства – «лампы Папалекси», которые в небольших количествах выпускались питерским заводом РОБТиТ под наблюдением самого разработчика.
Собственная радиолаборатория для исследований, экспериментов и изготовления собственных пустотных (катодных) реле — так тогда назывались радиолампы — хотя бы для нужд собственной радиостанции на Тверской радиостанции появилась по инициативе Бонч-Бруевича. Для этого он выпросил в физическом кабинете гимназии ненужный там вакуумный насос, кое-что из оборудования где-то ещё выпросил во временное пользование, на собственные деньги купил у местного аптекаря разнокалиберных стеклянных и резиновых трубок ртути для пароструйного насоса Ленгмюра, а в магазине скупил едва ли ни все осветительные электролампочки. Это потом ему удалось тоже выпросить на питерском заводе «Светлана» моток бракованной вольфрамовой проволоки, а на первых порах в качестве нитей накала в своих первых пустотных реле он использовал нити накала осветительных электроламп.
Когда в 1915 г. был изготовлен первый образец пустотного реле, Бонч-Бруевич собрал на своем столе макет испытательного радиоприёмника и подключил к нему свою первую самодельную радиолампу. Однако баллон опытного образца плохо держал даже не очень глубокий вакуум, потому лампа могла работать только при непрерывной откачке воздуха из нее, т.е. при непрерывной работе насосов, а для вращения электромоторов требовался ток. Первую небольшую партию ламп Бонч-Бруевич сумел изготовить к осени 1915 г. Правда, это были пока газонаполненные приборы, но с весны 1916 г. тверские умельцы наладили изготовление двуцокольных вакуумных ламп со стальными электродами, которые по всем параметрам превзошли французские лампы промышленного производства. Так, если французская лампа имела рабочий ресурс 10 часов и стоила 250 рублей, то тверская лампа при ресурсе 4 недели стоила лишь 32 рубля. Это ж была та самая «бабушка» последующих конструкций радиоламп Бонч-Бруевича.
Кустарное изготовление радиоламп — дело трудоёмкое, хлопотное и небезопасное, но личный состав станции понимал важность этого дела, потому в лаборатории с энтузиазмом трудились все свободные в данное время от своей вахты и службы. Так что Олегу Лосеву приходилось видеть на Тверской радиостанции не только керосиновые лампы, но и не раз наблюдать, как ловко манипулируют раскалёнными докрасна в керосиновых горелках стеклянными пузырями, одновременно ногами, посредством кузнечных мехов, нагнетая воздух в свои горелки. Став заядлым радиолюбителем, и Олег Лосев устроил дома радиолабораторию. Занимаясь дома всякими поделками, он не чурался и мальчишеских шалостей. Так, например, он иногда звонил по телефону какому-нибудь наугад выбранному абоненту и, услышав его ответ, прикладывал к микрофону какую-нибудь очередную изготовленную им электрическую пищалку или гуделку и представлял себе, как при этом «радуется» на другом конце провода случайный и незнакомый «собеседник».
После Октябрьской революции Тверская радиостанция потеряла своё военное значение и вместе с шестью другими крупнейшими станциями была передана в апреле 1918 г. из Военного ведомства в ведение Наркомата почт и телеграфа. Слух о легендарной «внештатной» радиолаборатории докатился в Москву до самого Ленина. 19 июня 1918 г. коллегия Наркомпочтеля приняла постановление об организации тверской радиолаборатории (ТРЛ) с мастерской со штатом 59 человек при Тверской радиостанции для разработки и изготовления различных радиотехнических приборов и, прежде всего, необходимого количества катодных реле, т.е. радиоламп. Управляющим лабораторией 26 июня стал начальник станции В.М. Лещинский. Ведущим работникам Тверской радиостанции и радиолаборатории при ней были установлены высокие оклады и предоставлены хорошие продовольственные пайки. Однако остальные производственно-бытовые условия в ТРЛ не изменились, потому и возник вопрос о необходимости передислокации ТРЛ в другое место и даже в другой город. Вариантов было много, но выбор пал на Нижний Новгород, поскольку там для размещения радиолаборатории было предложено большое каменное трёхэтажное здание с подвалом, двором и надворными постройками, как и в Твери — на крутом берегу Волги.
С убытием ТРЛ в Нижний Новгород, опустела Тверская радиостанция и «осиротел» Олег Лосев, но увлечений своих не растерял, а потому, летом 1920 г., окончив Тверское училище, решил поступать в Москве в институт связи. А в Москве в сентябре того же года проходил 1-й Всероссийский радиотехнический съезд. Конечно, пропустить такое событие Лосев не мог. Он сумел пробраться на съезд, где и встретил своих старых знакомых: Лещинского В. М., Бонч-Бруевича М.А. и Лебединского.
В. К. Лебединский и пригласил Лосева на работу в НРЛ. Молодой радиолюбитель перед соблазном не устоял и вскоре появился в Нижнем. Новгороде на Откосе в заветном доме № 8. Здесь и привелось Лосеву заниматься исследованием самых ненадёжных и самых капризных элементов тогдашних безламповых приёмников — кристаллических детекторов.
Возможности для экспериментов были безграничными, только меняй кристаллы да материал иглы. Главное – цель. И тут оказалось, что недостаток знаний не всегда недостаток – нередко из-за этого и появляются открытия, была бы удача. Приступая к исследованиям, О. В. Лосев исходил из принципиально ошибочной посылки, что поскольку «некоторые контакты… между металлом и кристаллом не подчиняются закону Ома, вполне вероятно, что в колебательном контуре, подключенном к такому контакту, могут возникнуть незатухающие колебания». (В то время уже было известно, что для самовозбуждения одной лишь нелинейности вольтамперной характеристики недостаточно; обязателен падающий участок – да Лосев этого не знал!) Удивительно, но у некоторых кристаллов он обнаружил искомые активные точки, обеспечивающие генерацию высокочастотных сигналов. Особенно эффективной оказалась пара «цинкит – угольное острие», которая при напряжениях менее 10 В позволяла получать радиосигналы с длиной волны вплоть до 68 м. Понятно, что сбивая генерацию, можно было реализовать и усилительный режим. Статья О. В. Лосева о детекторе-генераторе и детекторе-усилителе появилась в ТиТбп в июне 1922 г. К чести Лосева отметим, что в ней он разъясняет обязательность наличия падающего участка вольтамперной характеристики контакта. Разъясняет очень подробно, рассматривая вопрос и качественно и аналитически. По тону чувствуется, что разъясняет не только читателю, но прежде всего самому себе. Это характерно и для его последующих статей. В них он всегда не только исследователь, по и прилежный студент курсов самообразования. Замечательно, что рядом с Лосевым оказался В. К. Лебединский, который отчетливее, чем его молодой сотрудник, понял, что сделано открытие. Профессор сходу попытался дать объяснение наблюдаемому явлению, занялся этим и сам первооткрыватель, но ничего путного тогдашняя фундаментальная наука подсказать им не могла. В конце концов Лосев довольствовался лишь гипотезой: при достаточно большом токе в зоне контакта возникает некий электронный разряд наподобие вольтовой дуги, но без разогрева. Этот разряд и закорачивает высокое сопротивление контакта, обеспечивая генерацию. Похоже, вплоть до конца 1920-х гг. ему казалось, что процесс протекает в атмосфере над поверхностью кристалла. (По современным представлениям имело место сочетание лавинного пробоя с тиристорным эффектом.)
Конечно же В. К. Лебединский и М. А. Бонч-Бруевич обратили внимание на невоспроизводимость эффекта и на то, что, немного поработав, детекторы-генераторы «скисали», поэтому о какой-либо конкуренции с ламповой электроникой как генеральным направлением не могло быть и речи, но практическая значимость открытия была огромной.
И уже 13 января 1922 г. Лосев в детекторе из цинкита обнаружил активные свойства, т.е. способность кристаллов в определённых условиях усиливать и генерировать электрические колебания, а построенный Лосевым в 1922 г. радиоприёмник с генерирующим диодом – «кристадин» — принёс молодому учёному и изобретателю всемирную известность
Регенеративный приемник “Кристадин”
В те годы радиолюбительство начало принимать массовый характер. Вышло постановление правительства о его развитии, названное «законом о свободе эфира». Электронных ламп не хватало, и они были дороги, да им еще требовался и специальный источник электропитания, а схема Лосева могла работать от трех-четырех батареек для карманного фонарика! В серии последующих статей Олег Владимирович описал методику быстрого отыскивания активных точек на поверхности цинкита, заменил угольное острие металлической иглой, дал рецепты по обработке самих кристаллов и, разумеется, предложил целый ряд практических схем радиоприемников. И на все эти технические решения получил патенты (всего 7), начиная с «Детекторного приемника-гетеродина», заявленного в декабре 1923 г. Кто-то придумал звучное и вполне обоснованное название такому, полностью твердотельному приемнику – кристадин, образованное из сочетания кристалл + гетеродин. Очень скоро, используя детекторы-генераторы, радиолюбители начали делать и радиопередатчики, пригодные для связи на несколько километров. Это был подлинный триумф, популярные брошюры о кристадине расходились массовыми тиражами, а когда их перевели на английский и немецкий, О. В. Лосев получил широкое европейское признание. В письмах «оттуда» его величали не иначе как профессором, да и в НРЛ его карьера удалась: с первоначальной должности «служителя» (что-то вроде мальчика на побегушках) он шагнул в лаборанты, женился (неудачно) и почти перестал голодать.
Зарубежные научные журналы называли кристадин Лосева «сенсационный изобретением», а самого девятнадцатилетнего учёного – «профессором». После изобретения «Кристадина» Лосев стал едва ли ни «богом» радиолюбителей. В период с 1924 и по 1928 годы он получил от радиолюбителей более 700 писем и ни одно из них не оставил без ответа.
Устройство Лосева позволило не только принимать радиосигналы на больших расстояниях, но и передавать их. Молодому исследователю удалось получить пятнадцатикратное усиление сигнала в головных телефонах (наушниках) по сравнению с обычным детекторным приемником. Радиолюбители, высоко оценившие изобретение Лосева, писали в различные журналы, что «при помощи цинкитного детектора в Томске, например, можно слышать Москву, Нижний и даже заграничные станции». По лосевской брошюре «Кристадин» создавали свои первые приемники тысячи энтузиастов радиосвязи. Более того, кристадины можно было просто купить как в России (по цене 1 руб. 20 коп.), так и за рубежом.
Продолжая исследования, Лосев в 1923 г. на карборундовом детекторе обнаружил ещё одну разновидность активности кристаллов: холодное безинерционное свечение, т.е. способность полупроводников генерировать электромагнитные излучения в световом диапазоне волн. Раньше такого явления он не наблюдал, но прежде и использовались другие материалы. Карборунд (карбид кремния) был испробован впервые. Лосев повторил опыт — и снова полупрозрачный кристалл под тонким стальным острием засветился. Так, было сделано одно из перспективнейших открытий электроники — электролюминесценция полупроводникового перехода. Обнаружил Лосев явление случайно или тому были научные предпосылки, сейчас судить трудно. Так или иначе, но молодой талантливый исследователь не прошел мимо необычного явления, не отнес его в разряд случайных помех, напротив, обратил самое пристальное внимание, угадал, что оно базируется на еще неизвестном экспериментальной физике принципе. В мировой физике это явление получило название «электролюминесценция» или просто – «свечение Лосева». Практическое использование эффекта свечения Лосева началось в конце пятидесятых годов. Этому способствовало освоение полупроводниковых приборов: диодов, транзисторов, тиристоров. Не полупроводниковыми оставались только элементы отображения информации — громоздкие и ненадежные. Поэтому во всех развитых в научно-техническом отношении странах велась интенсивная разработка полупроводниковых светоизлучающих приборов
А в 1927-1928 годах Олег Владимирович сделал и третье своё открытие: емкостный фотоэффект в полупроводниках, т.е. способность кристаллов преобразовывать световую энергию в электрическую (принцип действия солнечных батарей).
В то время ещё никто не мог дать научного объяснения физическим явлениям, открытым Лосевым в полупроводниках, хотя впервые такую попытку тогда и предпринял коллега и друг Лосева — Георгий Александрович Остроумов (1898-1985), прибывший на работу в НРЛ из Казани в 1923 г вместе со своим старшим братом Борисом Александровичем Остроумовым (1687-1979). Однако попытка эта успехом не увенчалась, поскольку тогдашняя физика ещё не располагала научными фактами и знаниями, которые необходимы были для разработки этой теории. Знания такие появились только в конце второй мировой война, а кристаллический гетеродин Лосева (кристадин) подготовил открытие транзисторного эффекта в 1947 г. американскими учёными Бардиным и Браттейном. Американец Дестрио продолжал исследования «свечения Лосева». Кстати, все зарубежные учёные признавали приоритет открытий Лосева в области полупроводников и, кажется, лишь один Коллац имел своё особое мнение.
Повзрослевший Лосев стал не только более сосредоточенным, но и менее общительным. Во время работы ничто ему не мешало и не могло отвлекать от дела. Когда же ему приходилось что-то мастерить, т.е. работать больше руками, чем головой, он почти всегда что-нибудь тихонъко напевал или насвистывал. По воспоминаниям его коллег, физик Лосев был и Лосевым-романтиком. Однако на эти увлечения у него не оставалось времени: главным в его жизни была работа, работа и работа. К тому же он был и студентом-заочником Нижегородского университета, который он закончил, сдал все экзамены, но из-за какой-то формальности диплома не получил. Хотя, кажется, это его мало беспокоило. Может, по молодости, по житейской неопытности он считал, что главное — это реальные дела, а вовсе не канцелярская справка с печатью. А может, и в силу своей глубокой убеждённости, он, как физик, не мог смириться с тем, что реальным миром управляет не сущность вещей и явлений, а бюрократическое крючкотворство на основе юридических условностей.
Бурное развитие радиотехники во второй половине 20-х годов минувшего века потребовало коренной перестройки всего радиодела в стране. Так, летом 1928 г. в Ленинграде на специальном совещании представителей соответствующих ведомств было вынесено решение объединить НРЛ с ленинградской ЦРЛ (Центральной радиолабораторией), назначить научным руководителем объединённой ЦРД М.А.Бонч-Бруевича и поручить ему установить тематику исследовательских работ в соответствии с новыми научно-техническими требованиями. Сотрудникам НРЛ было предложено переехать в Ленинград для продолжения работы в ЦРЛ. К тому времени О.В. Лосев уже был женат, но его жена¬ Татьяна Чайкина не захотела оставлять Нижний Новгород. В Ленинград Лосев уехал один.
В ЦРЛ О.В.Лосев продолжал свои исследования, начатые в НРЛ. 25 марта 1931 г. лаборант 1-го разряда Лосев был переведён в вакуумную лабораторию Б.А. Остроумова. В эту же лабораторию была «влита» и группа сотрудников, которая разрабатывала тему, достаточно близкую к теме исследований Лосева (меднозакисные выпрямители, детекторы, вентильные фотоэлементы и т.д.). Одно время в этой группе работал и Дмитрий Маляров. Ведущим исполнителем этой темы была В.Н. Лепешинская, а её научным руководителем и стал сам Б.А.Остроумов. Значит, его научное общение с Лосевым еще в НРЛ не пропало даром, а о работах Лосева он как-то при случае рассказал А.Ф. Иоффе (1880-1960). Академик проявил к Лосеву живой интерес и стал привлекать его к исследованиям в области квантовой теории излучений. Под его руководством Лосев работал в целевом институте № 9 и в ГФТИ и продолжал серьезные исследования на переднем крае науки. Без вузовского диплома Лосев часто числился в документах просто лаборантом. Так Олег Владимирович поступил на работу в 1-й Ленинградский медицинский институт, где ему на кафедре физики предложили должность ассистента. Однако Б.А.Остроумов, ставший 15 июня 1937 г. кандидатом физико-математических наук без защиты диссертации и профессором, проявил живое участие в судьбе Лосева. Не забыл о нём и академик Иоффе А.Ф. По его представлению в 1938 г. Учёный совет Ленинградского политехнического института присудил Олегу Владимировичу Лосеву учёную степень, кандидата физико-математических наук и тоже без защиты диссертации. С получением кандидатского диплома. О.В.Лосев обрёл право на педагогическую работу и с осени 1938 г. стал преподавать физику студентам-медикам, не оставляя и научной работы.
Когда началась Отечественная война и немецкие войска подошли к Ленинграду, О.В.Лосев решил эвакуировать только родителей, но удалось ему отправить к родственникам в только отца: мать не могла оставить своего сына одного в прифронтовом городе. Лосев продолжал работу на кафедре физики. Там он разработал систему противопожарной сигнализации, электрический стимулятор сердечной деятельности и портативный обнаружитель металлических предметов (пуль и осколков) в ранах. Очень скоро прифронтовой Ленинград превратился в блокадный, и Лосев стал донором. В начале января 1942 г. от голода умерла, его мать, и Олег Владимирович пожалел, что в свое время отказался от эвакуации. А через несколько дней — 22 января 1942 года — в госпитале мединститута от истощения умер и сам О.В. Лосев. 16 февраля 1942-го от голода умер его друг и коллега по НРЛ и ЦРЛ Д.Е. Маляров, тоже успевший внести свой вклад в создание совместно с Н.Ф. Алексеевым в 1939 г. всемирно известного многорезонаторного магнетрона — прибора для генерирования мощных колебаний СВЧ.
О.В. Лосев, на десятилетия опередивший современную ему физику, занимался не только фундаментальной стороной науки, но и пытался доводить результаты своих исследований до практического применения, что подтверждается его 15-ю авторскими свидетельствами на изобретения, среди которых два — на «кристадины». Он разработал 6 конструкций радиоприёмников, в том числе и один ламповый.
В автобиографии 1939 г. О.В. Лосев назвал имя своего предшественника, отметив, что усилительные свойства кристаллических (галеновых) детекторов впервые обнаружил не он, а некий иностранный учёный ещё в 1910 г. Так что свою заслугу Лосев видел в основном в изобретении кристадинных приёмников, которые и произвели в мире фурор. Кристадины Лосева на длине волны 24 метра работали на нескольких радиостанциях Наркомпочтеля, за что их автор был дважды — в 1922 и в 1925 годах — удостоен премий НКПТ. А в 1931 г. Лосев получил премию за «свечение Лосева» и фотоэффект. С 1931 по 1934 годы О.В.Лосев трижды выступал с докладами о своих работах на Всесоюзных конференциях в Ленинграде, Киеве и Одессе. Также в автобиографии 1939 г. Лосев подтвердил, что с открытием усилительных свойств кристаллов, появилась реальная возможность создания полупроводникового аналога лампового триода, что и реализовали американские учёные Барцин и Браттейн в 1947 г.
Почему работы Лосева не включены в знаменитые исторические очерки по истории твердотельных усилителей — это очень интересный вопрос. Ведь кристадиновые радиоприемники и детекторы Лосева в середине 20−х годов демонстрировались на основных европейских радиотехнических выставках.
Есть такой биографический справочник — «Физики» (автор Ю. А. Храмов), он вышел в 1983 году в издательстве «Наука». Это самое полное собрание автобиографий отечественных и зарубежных ученых, изданное в нашей стране. Имени Олега Лосева в этом справочнике нет. Ну что ж справочник не может вместить всех, вошли только самые достойные. Но в той же самой книге содержится раздел «Хронология физики», где приведен перечень «основных физических фактов и открытий» и среди них: «1922 г. — О. В. Лосев открыл генерацию электромагнитных колебаний высокой частоты контактом металл-полупроводник».
Таким образом, в этой книге работа Лосева признана одной из самых важных в физике XX века, но места для его автобиографии не нашлось. В чем тут дело? Ответ очень прост: все советские физики послереволюционного периода заносились в справочник по рангу — включались только члены-корреспонденты и академики. Лаборанту же Лосеву дозволялось делать открытия, но не греться в лучах славы. При этом имя Лосева и значение его работ было хорошо известно сильным мира сего. В подтверждение этих слов процитируем выдержку из письма академика Абрама Иоффе Паулю Эренфесту (16 мая 1930 г.): «В научном отношении у меня ряд успехов. Так, Лосев получил в карборунде и других кристаллах свечение под действием электронов в 2−6 вольт. Граница свечения в спектре ограничена».
В 1947 году (к тридцатилетию Октябрьской революции) в нескольких выпусках журнала «Успехи физических наук» были опубликованы обзоры развития советской физики за тридцать лет, такие как: «Советские исследования по электронным полупроводникам», «Советская радиофизика за 30 лет», «Советская электроника за 30 лет». О Лосеве и его исследованиях кристадина упоминается лишь в одном обзоре (Б. И. Давыдова) — в части, посвященной фотоэффекту, отмечается: «В заключение нужно еще упомянуть работы О. В. Лосева по свечению кристаллического карборунда и по ‘обратимому’ вентильному фотоэффекту в нем (1931−1940)». И ничего сверх этого. (Отметим, к слову, что большинство результатов, которые в тех обзорах оценивались как «выдающиеся», сегодня никто и не вспоминает.)
источники
http://www.expert.ru/printissues/expert/2002/15/15ex-nauk/
http://housea.ru/index.php/history/50892
http://www.scienceforum.ru/2013/288/5765
А я вам напомню еще некоторых наших соотечественников: Академик Ландау — выдающийся советский физик, Роберт Бартини — учитель Королева, а так же вспомните про Кулибина