липидная оболочка коронавируса что это
Липидная оболочка коронавируса что это
В журнале Nature опубликован очень подробный обзор, характеризующих особенности строения и жизненный цикл SARS-CoV2, механизмы инфицирования и избегания своевременного иммунного ответа, обозначены потенциальные мишени для создания противовирусных препаратов. Также представлены результаты компьютерного моделирования строения вируса и механизмов проникновения в клетку.
Особенностью данного вируса является наличие очень большого количества гликанов на поверхности спайк-протеина, маскирующих его от иммунной системы человека. Поэтому на первом этапе заболевания вирус подобен «волку в овечьей шкуре» и остается невидим для иммунной системы. В дальнейшем, когда вирус уже размножился, иммунный ответ может развиться даже избыточно, что, по-видимому, лежит в основе тяжелого течения заболевания.
В S2- субъединице спайк-протеина есть три участка, делающих «ножку» спайк-протеина гибкой, что позволяет ей «искать» рецепторы на клетках хозяина более эффективно. Такая структура довольно редка для вирусов, обычно аналогичные «шипики» на поверхности вириона ригидны (такова, например, ситуация у вируса гриппа).
Важной частью спайк-протеина является RBD-домен, функцией которого является связь с рецептором ACE2 на поверхности клетки-хозяина. У SARS-CoV2 эта связь в 2-4 раза сильнее, чем у вируса SARS. Во время взаимодействия с рецептором этот домен «выдвигается» из-за двух маскирующих его молекул гликанов. Исследования in vitro показали, что мутации в этих двух гликанах могут полностью нарушать процессы проникновения вируса в клетку. Для эффективного взаимодействия RDB и ACE2 предпочтительна более «высокая» позиция этого домена на остальными структурами. У альфа варианта вируса найдено 10 дополнительных мутаций, приводящих RBD – домен в более «высокое» положение, а у дельта вируса – еще 3 мутации.
Попав в клетку, вирус подавляет экспрессию генов клетки-хозяина, в том числе – образование интерферонов, сигнализирующих о вирусной инфекции. Для ковидной инфекции типична очень низкая концентрация интерферонов в крови.
В дальнейшем может происходить формирование синцитиев из клеток легочной ткани. Считается, что синцитии позволяют дольше и эффективнее вырабатывать вирусные белки. Такой тип агрессии типичен для персистирующих вирусов – например, ВИЧ. SARS-CoV2 индуцирует даже формирование синцитиев клеток респираторного эпителия с лимфоцитами, что мешает нормальному иммунному ответу. Такой тип «маскировки» от иммунитета типичен для опухолей, а не вирусов.
В дальнейшем перестраивается эндоплазматический ретикулум с формированием шарообразных двухмембранных структур, в которых происходит активный синтез белков вируса. Выход вирионов наружу осуществляется в лизосомах, формирующихся в комлексе Гольджи, путем экзоцитоза. Считается, что молекулярные механизмы, ответственные за описанные процессы, могут быть мишенями для противовирусной терапии.
В месте соединения S1 и S2 субъединиц спайк-протеина есть зона, которая способна связывать и быть расщепленной фурином – протеазой клетки-хозяина, содержащейся в лизосомах. Такое предварительное расщепление значительно упрощает в дальнейшем взаимодействие с трансмембранной протеазой TMPRSS2 и значительно увеличивает проникновение вирусной частицы в следующую клетку. Для вируса SARS показано, что порядка 10% вирусных частиц на выходе из клетки – хозяина связано с фурином. У вируса SARS-CoV2 в соответствующем локусе, отвечающем за связь с фурином, идентифицированы мутации. Как следствие, до 50% вирионов альфа-разновидности SARS-CoV2, выходящих из клетки-хозяина, связаны с фурином, а в случае дельта-вируса – до 90%, что, по-видимому, и объясняет более агрессивное распространение этого варианта вируса. Есть данные, что у пациентов с дельта-формой в тканях легких и носоглотки содержание вирионов достоверно выше, чем у носителей альфа-формы.
По материалам: Megan Scudellari. How the coronavirus infects cells — and why Delta is so dangerous. Nature 595, 640-644 (2021). doi:
Инфекционисты назвали способы уничтожения коронавируса
Известно, что вирус – это не живой организм, а самоорганизующаяся наночастица, в которой самым слабым звеном является липидный (жировой) бислой. Липидный слой при поглощении клетками слизистой оболочки человека меняет свой генетический код, то есть мутирует и превращается в размножающиеся клетки-агрессоры.
Отсюда можно сделать следующие выводы. Так как вирус – не живой организм, то он не умирает, а разлагается сам по себе. Время распада зависит от температуры, влажности и типа материала, на котором он находится. Кроме того, вирус отличается крайней хрупкостью – единственное, что защищает его, это вышеназванная липидная оболочка, именно поэтому так эффективно для профилактики вирусных заражений использование моющих средств. Мыть руки с мылом необходимо более 20 секунд: после растворения жирового верхнего слоя, молекула белка сама разлагается и расщепляется.
В связи с тем, что вирус защищен липидной оболочкой необходимо мыть руки как до, так и после прикосновения к лицу, еде, замкам, ручкам, выключателям, пультам, телефону, часам, компьютерам, столам, телевизору, кнопкам, деньгам, ключам, брелокам, кошелькам и так далее. Молекулы вируса могут находиться в микротрещинах на руках, куда не попадает вода при мытье. Для уничтожения вируса в труднодоступных местах необходимо использовать увлажнители.
Прекрасным средством для уничтожения вируса является и алкоголь или любые другие спиртовые смеси, с процентной долей содержания спирта более 65%. Не менее действенной окажется и смесь с одной частью отбеливателя и пятью частями воды. Она растворяет белок, расщепляет его изнутри.
На втором месте после мыла, алкоголя и хлора стоит обычная перекись водорода. Она растворяет белок вируса, однако ее нужно использовать в чистом виде, а это вредно для кожи.
Что касается неэффективных средств, то к ним, в первую очередь, относятся бактерициды. Их бесполезность в борьбе с вирусами обусловлена тем, что вирус – не живой организм, как бактерии, поэтому он не может быть уничтожен антибиотиками. Также неэффективен уксус, так как он не разрушает защитный слой жира.
Кроме того, запрещено вытряхивать использованную или неиспользованную одежду, простыни или ткань: несмотря на то, что вирус приклеен к пористой поверхности, он очень инертен и распадается за три часа на ткани и пористых поверхностях, за четыре – на меди и древесине, за сутки на картоне, а также за 42 и 72 часа на металле и пластике соответственно. Однако если потрясти ту или иную поверхность, то молекулы вируса оказываются в воздухе. Именно поэтому эксперты также рекомендуют как можно чаще проветривать помещения.
Жизнь и устройство коронавирусов
В марте Всемирная организация здравоохранения объявила о пандемии коронавируса SARS-CoV-2. Медицинская статистика по коронавирусу SARS-CoV-2 уже несколько месяцев подряд остаётся одной из главных новостных тем, и хотя СМИ не устают напоминать о симптомах заболевания и методах профилактики, вирус продолжает распространяться с впечатляющей скоростью. Неприятных эмоций добавляет то, что специального лечения до сих пор нет, и всё вместе наводит на мысль, что SARS-CoV-2 есть нечто невиданное и неслыханное, с чем никто никогда не сталкивался.
На самом деле SARS-CoV-2 далеко не единственный коронавирус. Собственно, своё имя он получил по образцу ближайшего родственника — SARS-CoV, другого коронавируса, который оказался причиной вспышки атипичной пневмонии в 2002—2003 годах. Но и SARS-CoV был не первым коронавирусом. Первым аж в 1937 году стал IBV — вирус птичьего инфекционного бронхита, который до сих пор причиняет массу неприятностей птицеводам: например, в непривитой стае домашних кур заболевают абсолютно все птицы, а смертность может дойти до 60%. Спустя 10 лет после IBV обнаружили второй коронавирус — MHV, или вирус мышиного гепатита, а человеческие коронавирусы были открыты в середине 60-х годов XX века. До поры до времени они не пользовались особым вниманием, пока в начале XXI века не случилось коронавирусной атипичной пневмонии. После этого, по выражению одного из исследователей, коронавирусы мгновенно попали «из грязи в князи»: их стали изучать всеми возможными способами.
Сейчас известно 39 видов коронавирусов, в каждый вид могут входить десятки и сотни штаммов. Кроме того, есть ещё 10 видов — кандидатов в коронавирусы. Специалисты пока только проверяют, можно ли их считать настоящими коронавирусами. У них широкий спектр хозяев среди птиц и зверей, у которых они вызывают заболевания дыхательной системы и желудочно-кишечного тракта. К людям коронавирусы приходят от животных: вирус атипичной пневмонии 2002—2003 годов SARS-CoV пришёл от подковоносых летучих мышей, от которых он перескочил в мусанга, или малайскую пальмовую куницу, а из мусанга — уже в человека. (Любителям кофе малайская пальмовая куница должна быть знакома — это тот самый зверёк, без которого не было бы кофе копи-лювак: мусангам скармливают кофейные зёрна, которые определённым образом ферментируются в кишечнике, изменяя вкусовые свойства; кофе из зёрен, которые прогнали через мусангов, считается особо изысканным и стоит весьма немалых денег.)
Ещё один человеческий коронавирус известен по вспышке ближневосточного респираторного синдрома, первые случаи которого были зарегистрированы в 2012 году в Саудовской Аравии, — он получил название MERS-CoV. Этот вирус также пришёл к людям от летучих мышей с промежуточной остановкой в одногорбых верблюдах (оттого его ещё называют верблюжьим гриппом, что неправильно, — коронавирусы от вирусов гриппа отличаются). Умирают от него более трети заразившихся, однако заразиться им сложно: с момента появления вируса и до начала этого года в мире зарегистрировано лишь около двух с половиной тысяч случаев.
Подозревают, что и новый вирус SARS-CoV-2 тоже пришёл к нам от летучих мышей.
Наконец, есть ещё четыре человеческих коронавируса, два из которых, HCoV-229E и HCoV-OC43, были известны ещё до атипичной пневмонии от SARS-CoV, а два других, HCoV-NL63 и HCoV-HKU1, открыли в 2004 и 2005 годах. Все четыре не вызывают ничего серьёзнее мягкой простуды; хотя коронавирусная простуда встречается довольно часто — на её счёт относят 15—30% всей простуды в мире.
Но об эпидемиологии коронавирусов мы рассказывать не будем, а вместо этого поговорим о том, как они устроены и как на них реагируют наши клетки.
Обладатели белковой короны
Откуда в названии вирусов возникла «корона»? В электронный микроскоп можно увидеть, что округлые вирусные частицы украшены выступами, которые создают вокруг вируса как бы дополнительную оболочку, похожую на солнечную корону. Выступы — булавообразные молекулы белка S, который нужен вирусу, чтобы проникнуть в клетку. (Надо сказать, что «корона» из белка S есть ещё у одной группы вирусов — торовирусов, родственников коронавирусов, обычно заражающих животных и редко — человека.) У некоторых коронавирусов имеется «подкорона» — дополнительный слой выступающих из оболочки белков размером поменьше S. Этот более мелкий белок называется HE, гемагглютининэстераза. HE тоже нужен для взаимодействия с клеткой, и он есть кроме коронавирусов у торовирусов и у некоторых вирусов гриппа.
И белок S, и белок HE сидят в мембранной липидной оболочке. Откуда она берётся? Как мы помним, наши клетки окружены мембраной и внутри них существует много мембранных органелл — клеточных органов, выполняющих разные функции и ради правильной работы отделённых от остальной клетки двуслойной липидной мембраной. Её-то вирус и заимствует, выходя из клетки, а как именно, скажем чуть ниже. Кроме S и HE в ней сидит очень много белка М, который поддерживает и структурирует мембрану, и ещё немного белка E. Под липидной оболочкой с белками мы найдём геном вируса — нить молекулы РНК, которая усажена белком N: он упаковывает вирусную РНК в компактную свёрнутую спираль. (Белковая оболочка вирусов, непосредственно взаимодействующая с нуклеиновой кислотой, называется капсидом.) Когда РНК попадает в клетку, то на ней сразу можно синтезировать белки, и такую РНК у вирусов обозначают плюсом.
По этим признакам коронавирусы относят к РНК-содержащим вирусам, чей геном представляет собой одну-единственную плюс-цепь РНК. Так же выглядит геном у множества других вирусов, среди которых есть риновирусы (одна из самых частых причин простуды) и вирус гепатита С. В то же время коронавирусы относят к оболочечным вирусам, у которых кроме нуклеиновой кислоты и связанного с ней структурно-защитного белка (у коронавирусов это белок N) есть ещё мембранная оболочка. К оболочечным вирусам ещё относятся, например, вирусы герпеса, у которых наследственная информация хранится в ДНК, и ВИЧ. Как видим, по отдельности разные молекулярные черты можно найти у множества вирусов и лишь по их сочетанию отделить одну группу вирусов от другой.
Кстати, геном в виде РНК — это, можно сказать, слабость коронавирусов. В нуклеиновых кислотах время от времени появляются мутации либо из-за внешних факторов, вроде фоновой радиации, либо из-за стандартных ошибок белков, которые эти нуклеиновые кислоты копируют. Но в клеточной ДНК мутации могут быть исправлены специальными ремонтными белками. Этим же ремонтом способны воспользоваться вирусы с геномом в виде ДНК или же те, которые геномную РНК на время копируют в ДНК (такие вирусы называются ретровирусами). А в коронавирусной РНК ошибки никак не исправляются. Мутации помогают вирусам сменить хозяина, но среди мутаций есть очень много вредных, и если вирус не может никак корректировать дефекты в ДНК, они в какой-то момент могут сделать его просто нежизнеспособным.
Любые вирусы — это, грубо говоря, лишь комок молекул, пусть и сложно устроенный. Собственного обмена веществ у вирусов нет, и размножаться за пределами клетки они не могут. Вирусам с мембранной оболочкой проникнуть в клетку проще как из-за самой мембраны, так и благодаря сидящим на ней белкам: они хорошо подходят к клеточным рецепторам. Кроме того, белки мембранной оболочки, как собственно вирусные, так и те, которые вирус прихватил у клетки вместе с куском мембраны, помогают вирусу уходить от иммунной атаки. Но из-за мембраны такие вирусы более чувствительны к разным неблагоприятным факторам, вроде обезвоживания или моющих детергентов, мембрану разрушающих. Поэтому вирусы с мембранной оболочкой лучше всего передаются от хозяина к хозяину, а сидеть на какой-то поверхности и ждать, когда их оттуда снимет потенциальный хозяин, они долго не могут. Этим они отличаются от вирусов без мембраны, которые представляют собой нуклеиновую кислоту, заключённую в белковый капсид, — они более устойчивы в окружающей среде, но проникнуть в клетку для них зачастую сложнее.
Внедрение в клетку
Итак, коронавирус подходит к клетке и касается её шипиками белка S — того самого, который образует «корону». Поверхность клетки усажена множеством белков; среди них есть и ферменты-протеазы, то есть способные резать другие белковые молекулы. Клетка сначала поглощает вирус, впячивая в себя мембрану в том месте, где он с ней взаимодействовал, — и вирус оказывается внутри мембранного пузырька в клеточной цитоплазме. Ферменты-протеазы, с которыми соединился белок S, разрезают его, и в результате оставшаяся у вируса часть белка S меняет пространственную форму. Изменённый S помогает сблизиться мембране вируса и мембране пузырька, в который его поместила клетка, — две мембраны сливаются, вирусная мембранная оболочка расходится, и в клеточную цитоплазму выходит вирусная РНК.
Разные вирусы пользуются разными клеточными белками для входа. Так, вирус атипичной пневмонии SARS-CoV и относительно безобидный HCoV-NL63 связываются с ангиотензинпревращающим ферментом 2, который помогает регулировать кровяное давление, участвует в управлении иммунитетом и играет роль ещё в целом ряде процессов. Но белка одного вида для входа бывает недостаточно, поэтому, например, SARS-CoV нужен ещё белок TMPRSS2 — одна из сериновых протеаз, участвующая в разных биохимических реакциях. Вирус сначала связывается с одним белком на поверхности клетки, а потом второй белок на поверхности клетки режет вирусный белок S, после чего мембраны вируса и клетки соединяются.
Недавно в журнале «Cell» была опубликована статья, в которой говорится, что и новый SARS-CoV-2 проникает в клетку с помощью ангиотензинпревращающего фермента 2 и TMPRSS2; позже в «Science» появилось сообщение, что SARS-CoV и SARS-CoV-2 взаимодействуют с ангиотензинпревращающим ферментом 2 похожим образом. Если всё так, то можно было бы подумать о лекарствах против SARS-CoV-2, предотвращающих его взаимодействие с этими белками, — по аналогии с некоторыми противогриппозными препаратами, которые мешают вирусу гриппа проникнуть в клетку. Также есть данные, что SARS-CoV-2 нужен клеточный белок фурин, который активирует вирусные белки ещё во время сборки вируса внутри клетки. Фурин — фермент, присутствующий в самых разных клетках, что могло бы объяснить, почему SARS-CoV-2 находят в разных тканях. Иногда можно услышать, что из всех коронавирусов только SARS-CoV-2 использует фурин, однако в 2014 году в журнале «PNAS» вышла статья, в которой утверждалось, что фурин нужен для активации белка S вирусу ближневосточного респираторного синдрома — MERS-CoV.
Вирус проник в клетку, и теперь он начинает копировать свой геном, то есть молекулу РНК, и синтезировать белки, нужные для копирования РНК и для формирования вирусных частиц. Кроме полных геномных РНК коронавирусы создают ещё набор более коротких РНК — они синтезируются на больших геномных РНК и нужны только для синтеза белков; в вирусные частицы эти короткие РНК не попадают (точно так же ведут себя некоторые другие вирусы, которые вместе с коронавирусами объединяют в группу Nidovirales). Все вирусные РНК синтезируются в особых белковых комплексах, которые, в свою очередь, закреплены в небольших мембранных пузырьках. Эти пузырьки создаёт сам вирус: его белки вторгаются во внутриклеточные мембраны и фрагментируют их, создавая пузырьки-везикулы, чтобы РНК-синтезирующим комплексам было к чему пришвартоваться.
Часть насинтезированной РНК остаётся плавать в цитоплазме клетки — на ней синтезируется белок N, который будет упаковывать геномную вирусную РНК в спираль. Другие структурные белки, те, что потом окажутся в мембранной оболочке вируса (S, M и пр.), синтезируются на РНК, осевшей на особой внутриклеточной структуре — эндоплазматической сети, или эндоплазматическом ретикулуме (ЭР). Эндоплазматическая сеть — это огромная система мембранных канальцев, цистерн и пузырьков, на которых сидят белоксинтезирующие молекулярные машины рибосомы и собирают белки в соответствии с информацией в РНК. Готовые белки погружаются внутрь полостей ЭР, где приобретают правильную пространственную форму и потом либо переходят в клеточную цитоплазму, либо отправляются на экспорт, наружу из клетки, будучи заключены в транспортный мембранный пузырёк.
Белки коронавирусов M, S, HE и E по мере готовности накапливаются прямо в мембране эндоплазматической сети. И когда к ним приближается вирусная геномная РНК, унизанная белком N, белки в мембране начинают взаимодействовать с ней и друг с другом, так что мембрана эндоплазматической сети изгибается и обволакивает вирусную РНК. Получается вирусная частица, окружённая мембранной оболочкой. При этом частица погружается внутрь ЭР, отшнуровываясь от мембраны, и начинает путешествие к краю клетки внутри «экспортного» мембранного пузырька. Пузырёк подходит к наружной клеточной мембране, сливается с ней, и вирусная частица выплёскивается наружу.
Естественно, вирус старается сделать как можно больше своих копий. И естественно, каждая отдельная клетка и весь организм в целом хотели бы побыстрее избавиться от вируса — всё-таки он расходует их ресурсы. В идеале клетке лучше погибнуть вместе с вирусом и сделать это так, чтобы не раздражать иммунную систему, потому что иммунное воспаление, хотя и нацелено против инфекций, сказывается и на здоровых тканях. Тут есть разные варианты. Клетка может сама себя съесть, то есть запустить аутофагию (см. «Наука и жизнь» №11, 2016 г., статья «Аутофагия на страже здоровья клетки»). Суть аутофагии в том, что клетка переваривает себя по частям с помощью специальных органелл с ферментами, расщепляющими клеточные биомолекулы. Аутофагия включается в ответ на разные стрессы, начиная с голодания и заканчивая вирусной инфекцией. Другой способ — запустить апоптоз. Так называют ещё одну программу клеточного самоубийства, которое происходит по иному механизму: здесь опять работают специальные расщепляющие ферменты, фрагментирующие все внутренности клетки и заключающие их в небольшие мембранные пузырьки, а эти пузырьки уже съедают клетки-соседи или иммунные клетки-уборщики.
Особенности внутриклеточной борьбы
О том, что у неё внутри орудует вирус, клетка может догадаться по неполадкам с внутренними мембранами — мы помним, что коронавирусы фрагментируют мембраны, чтобы дать опору своим белкам, синтезирующим РНК, и сами вирусные частицы прихватывают себе куски мембран. Кроме того, вирусные белки накапливаются в эндоплазматической сети и вызывают так называемый ЭР-стресс, то есть стресс эндоплазматического ретикулума. ЭР-стресс заставляет клетку остановить синтез белков (что, несомненно, бьёт по вирусу — ведь он зависит от клеточной белоксинтезирующей машины) и активирует сигнальные молекулярные пути, которые включают программы клеточного суицида. Наконец, клетка может понять по вирусной РНК, что внутри у неё поселилась инфекция, и в ответ начать синтез интерферона первого типа. Это сигнальный белок, который выходит из клетки и оповещает всех об инфекции, в результате здоровые клетки готовятся защищаться от своей соседки, а иммунные клетки стремятся уничтожить заражённую клетку.
Но у вирусов, к сожалению, есть способы заставить клетку жить подольше. Например, белок Е вируса атипичной пневмонии SARS-CoV подавляет апоптоз — значит, клетка будет производить вирусные частицы до полного истощения. В зависимости от состояния белков, участвующих в сигнальных путях, эти сигнальные пути могут либо включать программу суицида, либо, наоборот, поощрять клетку жить дальше, и коронавирусы могут переключать сигнальные пути в пользу жизни. И ещё коронавирусы умеют подавлять интерфероновую защиту и воспалительную реакцию: некоторые их белки скрывают от клетки вирусную РНК, не дают защитной системе эту РНК увидеть. Защитный механизм не включается, про инфекцию не знают ни соседи больной клетки, ни иммунитет, и вирус размножается всё сильнее и сильнее. Не все коронавирусы умеют так делать, и те, против которых интерфероновая защита срабатывает вовремя, вызывают лишь слабую простуду. А вот знаменитые SARS-CoV и MERS-CoV как раз хорошо умеют отключать интерфероновую систему тревоги, и считается, что во многом из-за этого они вызывают очень тяжёлые симптомы. Если организм пропустил начало инфекции, то потом, когда он всё равно её обнаружит, ему придётся иметь дело с огромным числом вирусов и заражённых клеток. Коронавирусы же не только подавляют воспаление — некоторые из их белков как раз воспаление сильно стимулируют. Поэтому говорят, что осложнения от коронавирусных инфекций во многом возникают из-за очень сильного иммунного ответа.
Об опасных хитростях коронавирусов можно рассказать ещё много. Например, они нашли себе разных молекулярных помощников: кроме поверхностных ферментов, которые помогают вирусу проникнуть в клетку, внутри клетки ещё есть множество белков, помогающих вирусу на всех этапах его жизни — в копировании генома, в синтезе вирусных белков, в сборке вирусных частиц и т. д. А некоторые вирусные белки наносят дополнительный вред клеткам, создавая в клеточных мембранах лишние отверстия — ионные каналы, из-за чего в клетке нарушается распределение ионов и, как следствие, меняются многие молекулярные процессы. Но хотя всё это звучит довольно пугающе, нельзя не признать, что про жизнь и устройство коронавирусов мы знаем уже очень много. Остаётся надеяться, что наши знания в ближайшем будущем найдут практическое применение и помогут справиться не только с текущей пандемией, но и понять, что делать с будущими коронавирусами.
SARS-CoV — Severe Аcute Respiratory Synd-rome-related CoronaVirus, коронавирус тяжёлого острого респираторного синдрома, вызвавший вспышку атипичной пневмонии 2002—2003 годов.
SARS-CoV-2 — коронавирус тяжёлого острого респираторного синдрома-2, вызывающий заболевание COVID-19, то есть COrona VIrus Disease 2019, или коронавирусная болезнь 2019 года.
MERS-CoV — Middle East Respiratory Syndrome-related CoronaVirus, коронавирус ближневосточного респираторного синдрома.
HCoV – общая аббревиатура для человеческих коронавирусов, Human CoronaVirus.
Последовательность аминокислот в белках кодируется триплетами генетических «букв» — нуклеотидов, из которых состоят ДНК и РНК. Но смысл в последовательности нуклеотидов будет только в том случае, если она прочитывается в одном определённом направлении. Однако ДНК и многие РНК состоят из двух цепей, которые соединены по правилу комплементарности нуклеотидов, так что напротив осмысленной последовательности в одной цепи будет бессмысленная последовательность букв в другой. Их так и называют — смысловая и антисмысловая цепи. Плюс-цепь РНК коронавирусов — цепь со смыслом: информацию с неё можно сразу считать в белок. А есть вирусы, содержащие минус-цепь, то есть антисмысловую. Их жизнь в клетке начинается с того, что на минус-цепи строится комплементарная ей плюс-цепь, на которой уже можно синтезировать белки.
Все ферменты катализируют реакции с помощью группы аминокислот, образующих активный центр молекулы; у сериновых протеаз, таких, как помогающий коронавирусам фермент TMPRSS2, в их активный центр входит аминокислота серин.
У ретровирусов гены закодированы в РНК, но когда они попадают в клетку, на их РНК специальный фермент синтезирует ДНК, хотя обычно всё происходит наоборот — на ДНК-шаблоне синтезируется РНК. Из-за того, что у них всё наоборот, ретровирусы и получили в названии приставку «ретро». Один из самых известных ретровирусов — ВИЧ.