лист алюминиевый нагартованный что это
Нагартовка алюминия: немного физики
Методы обработки металлов давлением – прокатка, ковка, штамповка, прессование – превращают литой алюминиевый слиток в готовый полуфабрикат или конечное изделие – алюминиевый лист, алюминиевую поковку, алюминиевую штампованную деталь или алюминиевый профиль. Это происходит при повышенной или комнатной температуре и может также включать один или несколько промежуточных нагревов – отжигов – алюминия или алюминиевого сплава для восстановления его пластичности. При этом происходит два основных изменения: 1) изменение формы и 2) изменение микроструктуры и механических свойств.
Пример: прокатка фольги из слитка
Например, прокаткой из алюминиевого слитка длиной 5 м и толщиной 300 мм получают около 200 километров алюминиевой фольги толщиной 7 микрометров. Изменение формы измеряется единицами деформации. И без численной оценки деформаций ясно, что здесь они были очень большими, и их нельзя было достичь за один проход. Обычно путь изготовления фольги начинается с горячей прокатки и заканчивается холодной прокаткой и отжигом.
Почему алюминий пластичный?
Способность подвергаться большой пластической деформации является одним из наиболее полезных свойств металлов. Металлы с гранецентрированной кубической решеткой, к которым относится и алюминий, обычно проявляют хорошую пластичность – их можно легко деформировать в различные сложные формы. Обычно металлы состоит из большого количества отдельных зерен или кристаллов, то есть они являются поликристаллическими. Типичное зерно или кристалл алюминия после горячей и холодной обработки, а затем отжига имеет диаметр, скажем, 40 мкм, а элементарная ячейка атомной кристаллической решетки – всего около 0,4 нм = 0,0004 мкм. Так что каждое зерно содержит много миллионов таких элементарных ячеек – порядка 10 15 штук.
Дислокации в алюминии
При разливке алюминиевых слитков первичные кристаллы растут из жидкой фазы и литая микроструктура обычно очень грубая. Когда алюминий пластически деформируют, каждое зерно деформируется путем движения линейных дефектов своей кристаллической решетки. Деформация происходит за счет проскальзывания по плоскостям скольжения вдоль направлений сдвига. Эти дефекты называют дислокациями (рисунок 1). Дислокации двигаются по некоторым кристаллографическим плоскостям в кристалле – так называемым «плотно упакованным плоскостям», которые известны как плоскости скольжения. Движение одной дислокации производит единичную сдвиговую деформацию, а объединенное движение сотен тысяч дислокаций – полную деформацию.
В ходе деформации при комнатной температуре число дислокаций возрастает и им становится трудно двигаться сквозь атомную решетку. В этом случае говорят, что алюминий «получил нагартовку», «получил деформационное упрочнение» или даже «наклепался», а такой алюминий или алюминиевый сплав называют нагартованным. Это означает, что для продолжения деформации требуется все большие усилия, а алюминий постепенно теряет пластичность, что, в конечном счете, приведет к образованию в нем трещин и его разрушению.
В это время на атомном уровне происходит следующее. В ходе деформации скольжение дислокаций происходит очень активно и движущиеся дислокации различных плоскостей скольжения начинают взаимодействовать друг с другом, перепутываться между собой и образовывать так называемый «лес» дислокаций. С увеличением плотности дислокаций возрастает предел текучести материала – где-то прямо пропорционально корню квадратному из плотности дислокаций.
Возврат и рекристаллизация деформированного алюминия
Дислокации, которые возникли при нагартовке алюминия, можно удалить путем нагрева нагартованного металла до умеренно высокой температуры, например, 345 °С. Это заставляет алюминий снова стать мягким и восстанавливает его пластичность. Этот нагрев называют отжигом. Изменения микроструктуры, которые происходят в ходе отжига, называют возвратом и рекристаллизацией. В ходе деформации при повышенных температурах обычно происходят процессы восстановления. Их называют динамическим возвратом и динамической рекристаллизацией.
Благодаря этим процессам алюминий не нагартовывается так сильно как при комнатной температуре и требует для деформирования намного более низкие нагрузки. Уже при температуре 200 ºС чистый алюминий почти полностью теряет способность к нагартовке. При умеренных пластических деформациях алюминиевых сплавов дислокации в них распределяются неоднородно, а формируют ячейки со стенками из перепутанных дислокаций и малой плотностью дислокаций внутри ячеек. Обычно эти ячейки имеют диаметр порядка 1 микрометра. Когда происходит возврат, стенки ячеек становятся границами так называемых субзерен. При отжиге алюминия или алюминиевого сплава после большого объема холодной пластической деформации происходит процесс рекристаллизации с образованием новых зерен (рисунок 2). Движущей силой рекристаллизации является запасенная внутренняя энергия, которая возникает при образовании дислокаций.
Нагартованные состояния алюминия
Наклеп или нагартовка являются естественным следствием большинства деформационных операций алюминия и его сплавов. Иногда это называют еще деформационным упрочнением. Наклеп повышает прочность сплава, которая была достигнута в результате легирования и упрочняющей термической обработки. Для термически упрочняемых сплавов деформационное упрочнение может также повышать скорость выделения упрочняющей фазы.
Степень нагартовки
Нагартовку применяют для повышения прочностных свойств алюминия и алюминиевых сплавов, которые не упрочняются термической обработкой. Иногда эти сплавы – в основном сплавы серий 3ххх и 5ххх – называют в позитивном ключе: деформационно упрочняемыми. Основными «рычагами» для получения того или другого нагартованного состояния являются степень нагартовки – количество пластической холодной деформации и отжиг, полный или частичный – нагрев до температуры 350-400 °С при длительности, как правило, достаточной для полного прогрева.
Полный и частичный отжиг
Полный отжиг применяют для полного снятия нагартовки материала и приведения материала к состоянию с минимальными прочностными характеристиками и максимальными пластическим свойствами. Частичный отжиг выполняют для частичного снижения уровня прочностных свойств и повышения пластических для приведения материала готового изделия в заданное состояние.
Обозначение состояний алюминиевых сплавов
Для обозначения всех состояний алюминия и алюминиевых сплавов (и не только нагартованных) во всем мире широко применяется американская система обозначений, разработанная в свое время Американской Алюминиевой Ассоциацией.
Состояние материала в горячепрессованном состоянии без дополнительных обработок – термических или деформационных – обозначается стандартах В и ISO буквой F и никакие цифры за ней не следуют. В отечественных стандартах это состояние идет вообще без обозначения.
Состояние полностью отожженного материала обозначается буквой «О» (не ноль) по международной классификации состояний алюминия и алюминиевых сплавов или «М» – по отечественным ГОСТам. Буква О с дополнительной цифрой относится к отжигу со специальными условиями.
Все обозначения нагартованных состояний начинаются с латинской буквы «Н». За ней могут идти от 1 до 3 цифр.
Только нагартовка – серия Н1
Чисто нагартованные состояния без дополнительных обработок образуют серию Н1. Полностью нагартованным состоянием материала, которое обозначают Н18, называют состояние, полученное при холодной деформации эквивалентной относительному обжатию при прокатке 0,75. Относительное обжатие – это отношение разности толщин исходного и конечного листа к исходной толщине листа. Относительная вытяжка 0,75 будет достигаться, например, при исходной толщине 10 мм и конечной толщине 2,5 мм: (10 – 2,5)/10 = 0,75. Состояние Н19 обозначает изделия с еще большей степенью нагартовки, чем в состоянии Н18. Оно применяется, например, для ленты толщиной 0,30 мм из алюминиевого сплава 3104 для изготовления корпуса пивной банки. Состояния Н16, Н14 и Н12 получают при меньшем количестве холодной деформации и они представляют, соответственно, тричетвертинагартованное, полунагартованное и четвертьнагартованное состояния.
Состояния алюминия H111 и H112
При указании требований к механическим свойствам алюминия и алюминиевых сплавов часто употребляют обозначения состояний Н111 и Н112 из той же серии Н1. Состояние Н111 отличается от отожженного состояния О только небольшой степенью нагартовки, которую мог получить материал при правке или других технологических операциях. Состояние Н112 отличается от состояния F только небольшой степенью нагартовки (при горячей или холодной обработке), а также обязательным контролем механических свойств.
Нагартовка и отжиг – серия Н2
Серия Н2 относится к материалам, которые были нагартованы до более высокой степени, чем это нужно было бы для заданных прочностных свойств, а затем снижают эту «лишнюю» прочность снимают с помощью частичного отжига. С увеличением степени нагартовки вторая цифра возрастает от 2 до 8 аналогично чисто нагартованным состояния: Н22, Н24, Н26 и Н28.
На рисунке схематически показаны нагартованные состояния серий Н1 и Н2 при различной степени нагартовки и различных длительностях отжига при постоянной температуре. Бывают аналогичные графики в зависимости от температуры отжига. У состояний с одинаковыми вторыми цифрами пределы прочности – одинаковые, а предел текучести у состояний с частичным отжигом ниже, чем у чисто нагартованных состояний. График роста прочности от степени холодной деформации имеет выпуклость вверх. Это отражает тот факт, что первые стадии холодной деформации дают максимальный прирост прочности.
Серия Н3 – для сплавов алюминий-магний
Серия Н3 – состояния с нагартовкой и стабилизирующей обработкой: Н32, Н34, Н36 и Н38. Эту серию состояний применяют только для алюминиево-магниевых сплавов – сплавов серии 5ххх. Дело в том, что в нагартованном состоянии эти сплавы в течение некоторого времени могут терять, достигнутые нагартовкой прочностные свойства, за счет механизма естественного старения. Поэтому, если стабильность прочностных свойств важна, их часто нагревают до умеренных температур, например, 220 °С, чтобы завершить этот процесс старения, при этом несколько снизить прочность, но повысить пластичность и, тем самым, обеспечить последующую стабильность механических свойств и рабочих характеристик.
Нагартовка и лакировка – серия Н4
Серия Н4 применяется для нагартованных изделий с дополнительной лакировкой поверхности. Например, при изготовлении крышек пивных банок применяют ленту толщиной 0,26 мм из алюминиевого сплава 5182 в состоянии Н48 – полностью нагартованную и лакированную.
Состояния алюминиевых сплавов в стандартах ГОСТ
В старых, еще «советских», но еще успешно действующих ГОСТах применяются свои обозначения нагартованных состояний. В ГОСТ 18475-82 на холоднодеформированные трубы, ГОСТ 7871-75 на сварочную проволоку и ГОСТ 21631-76 на листы предусмотрены следующие состояния материала:
В ГОСТ 24767-81 на холодногнутые профили предусмотрено
В относительно «свежем» ГОСТ 13726-97 на ленты к состоянием М и Н уже включают дополнительные состояния материала:
ГОСТ 18475-82 кроме этого предусматривает еще два состояния материала с участием нагартовки для термически упрочняемых сплавов АД31 и 1955:
Это аналоги международных обозначений состояний Т8 и Т3, которые относятся к состояниям термически упрочняемых алюминиевых сплавов.
5 способов нагартовки (пластической деформации металлов)
Услышав слово «нагартовка», большинство пожмёт плечами. Бывшие студенты металлургических и машиностроительных учебных заведений наморщат лоб, пытаясь что-то вспомнить. Лишь единицы смогут объяснить суть явления. Расскажем об этом сложном термине, пришедшем к нам из материаловедения металлов.
Нагартовка или наклёп?
Часто нагартовку путают с наклёпом. Наклёп — более широкое понятие. Это все виды пластической деформации металлов, возникающие при наружном механическом воздействии. Наклёп может быть полезным и вредным. Полезный наклёп создаётся специально и называется «нагартовка» (от немецкого слова hart — твёрдый). Вредный наклёп образуется не специально и требует последующей термической обработки металла.
Что такое пластическая деформация?
Деформация — это изменение формы и размеров предмета. Она бывает упругой и неупругой. При упругой деформации размеры тела не меняются или восстанавливаются, при неупругой меняются. Неупругая деформация возникает, например, в алюминиевой заклёпке при ударах по ней металлическим молотком для формирования второй шляпки. Под ударом молотка алюминий на мгновение становится пластичным в месте удара и меняет свою форму. Поэтому неупругую деформацию металлов ещё называют пластической.
Что происходит внутри металла при пластической деформации?
Любой металл имеет кристаллическую пространственную решётку, в узлах которой находятся атомы. Чистые металлы без примесей имеют правильную прямоугольную решётку, в которой расстояния между атомами равны. Освободить металл от примесей при плавке сложно и на 100% невозможно. После плавки металл начинает остывать. Внутри него происходят сложные физико-химические процессы и формируется монолитный кристалл.
Примеси в виде атомов чужих металлов и неметаллов вклиниваются в структуру кристалла и мешают его правильному росту. Вот поэтому в любом металле после расплава при остывании образуются зёрна разной величины и формы. Внутри каждого зерна находится чистый металл с правильной решёткой. Примеси располагаются на границах зёрен. Связи между атомами металла в кристалле очень сильны. Но при пластичной деформации строгая прямоугольная решётка кристалла меняет свою форму, она сминается.
Пример из жизни
Если взять кусочек пластилина и немного покатать его между ладоней, можно получить некое подобие металлического зерна. Ударив несильно ладонью по окатышу, получим овальный блинчик. Приблизительно такую форму принимают зёрна металла после пластической деформации. Но не все зёрна становятся «блинчиками». Пластическая деформация сминает зёрна только в верхних слоях металла, упрочняя его.
Почему упрочняются верхние слои?
Для наглядности нужно опять обратиться к пластилину. Сделаем много окатышей и положим их ненадолго в морозилку. Из несильно замороженных кусочков слепим кучу. Ударим ладонью по этой куче. Что произошло? В месте удара образовались знакомые нам «блинчики». В глубине кучи окатыши тоже немного помялись. Чем глубже, тем меньше было сминания.
А теперь попробуем отрывать окатыши пластилина от кучи. С обратной от удара стороны это получается легко. Но чем ближе к месту удара, тем тяжелее это делать. Почему? Зёрна в глубине металла имеют определённую площадь соприкосновения друг с другом. В месте удара площадь соприкосновения увеличивается из-за увеличения внешней поверхности смятого зерна. При увеличении площади соприкосновения «родные» атомы металла соседних зёрен образуют между собой дополнительные связи. «Блинчики» крепче связаны между собой, чем простые «окатыши». Вот и весь секрет уплотнения и упрочнения верхних слоёв металла после пластической деформации!
Виды нагартовки металла
Нагартовка — это полезный процесс, при котором уплотняются верхние слои металла. Такой уровень упрочнения не приводит к появлению трещин и разрушению верхних слоёв. Снаружи металла появляется «корка», которая защищает деталь при эксплуатации. После нагартовки не нужна последующая механическая обработка металла.
В отличие от нагартовки вредный наклёп требует снятия возникших в верхних слоях напряжений. Металлу устраивают «баню», нагревая поверхность до величины в 40–60% от температуры плавления. При остывании происходит рекристаллизация, восстанавливается обычная структура зёрен, напряжений больше нет и можно проводить дальнейшую механическую обработку деталей, не ломая инструмент.
Полезный наклёп (нагартовка) и вредный наклёп возникают в результате пластической деформации верхних слоёв металла только в результате холодной обработки давлением. «Холодный» – подразумевает температуру окружающего воздуха. Справочники говорят нам о допустимой верхней температуре — не больше температуры «рекристаллизации».
Важной особенностью пластической деформации является отсутствие разрушения. Пластичность оценивается величиной относительного удлинения стандартного образца при разрыве. Эта величина составляет 10–50%. К сплавам, обладающим высокой пластичностью, относятся низкоуглеродистые стали (содержание углерода 0,25%), сплавы алюминия, меди (латуни), многие легированные стали.
Какими же бывают виды холодной обработки металла давлением, запускающие процесс нагартовки в металле?
Холодная ковка
Оборудованием служат пневматические молоты при весе заготовок от 0,3 до 20 кг, паровоздушные молоты для заготовок 20–350 кг, гидравлические прессы для обработки деталей весом до 200 тонн.
Холодную ковку включают в технологию обработки, если нужно:
Холодная прокатка
Это самый распространённый способ нагартовки. Так получают длинные заготовки — трубы, рельсы, профили строительных конструкций. Прокаткой получают листовой металл, используемый в машиностроении. Примером холодной прокатки может служить алюминиевая фольга толщиной до 0,001 мм, получаемая из чистого алюминия.
Холодное прессование или штамповка
Есть два вида — объёмная и листовая штамповка.
Выдавливание производят на прессах в штампах, имеющих пуансон и матрицу. Исходной заготовкой служит пруток или лист. Если делают прямое выдавливание, то получают болты и клапаны. Обратным выдавливанием изготавливают полые детали. При боковом выдавливании производят различные тройники и крестовины. В сложном изделии, выдавливание делают комбинированным.
Только этот вид штамповки позволяет получить максимальную деформацию поверхности без её разрушения.
Холодная высадка — самый высокопроизводительный способ изготовления продукции. Процесс поддаётся автоматизации, поэтому в минуту можно получить от 20 до 400 деталей. Исходным материалом здесь служит пруток или проволока диаметром 0,5–40 мм. В высадке есть потребность при выработке деталей с местным утолщением: заклёпок, болтов и винтов, гвоздей, шариков, звёздочек и накидных гаек. Коэффициент использования металла достигает 95%.
Процесс холодной формовки аналогичен горячей штамповке. Однако здесь нужны более высокие усилия, потому что материал имеет низкую формуемость из-за упрочнения и действия сил трения. Обычно так получают детали из цветных металлов.
При холодной листовой штамповке заготовками служат листы, полосы или ленты толщиной не более 10 мм.
При листовой штамповке деформации можно подвергать всю заготовку (отрезка и вырубка) или её часть (гибка, вытяжка и формовка).
Холодное волочение
Если нужно уменьшить диаметр и уплотнить поверхность проволоки для повышения её прочностных характеристик, применяют волочение. Это единственный способ нагартовки больших объёмов проволоки. В отличие от прокатки, где инструментом служат вращающиеся валки, в волочении для обжатия используют неподвижную матрицу с фильерами. За один цикл нельзя значительно сократить диаметр изделия, потому что тянущее усилие приложено к его тонкому концу.
Волочильные станы позволяют получать проволоку диаметром от 1 микрона до 6 мм.
Редуцирование
При этом способе нагартовки заготовка помещается между вращающимися обжимными валами или вращающаяся заготовка формуется под действием пуансона. В процессе вращения и обжима происходит изменение формы поверхности детали и её уплотнение.
На резьбонакатных станках получают заготовки с наружной и внутренней резьбой М3 — М68, используя для этого накатные ролики или оправки. При редуцировании труб происходит в основном закатка или раскатка концов на длину до 200 мм. Правка заготовок нужна для выправления геометрической оси изделия. Гибку заготовок используют для получения пружин разного диаметра.
Как оказалось, нагартовка очень интересный, полезный и распространённый способ деформации металлов, который позволяет значительно увеличить эффективность металлообработки.
Нагартованные состояния алюминия
Задача упрочнения поверхностного слоя металлического изделия является достаточно актуальной во многих случаях, ведь большая часть деталей машин и различных механизмов работает под воздействием значительных механических нагрузок. Решить такую задачу позволяет как наклеп, так и нагартовка, которые, несмотря на свою схожесть, все же имеют определенные различия.
Степень нагартовки
Нагартовку применяют для повышения прочностных свойств алюминия и алюминиевых сплавов, которые не упрочняются термической обработкой. Иногда эти сплавы – в основном сплавы серий 3ххх и 5ххх – называют в позитивном ключе: деформационно упрочняемыми. Основными «рычагами» для получения того или другого нагартованного состояния являются степень нагартовки – количество пластической холодной деформации и отжиг, полный или частичный – нагрев до температуры 350-400 °С при длительности, как правило, достаточной для полного прогрева.
Виды нагартовки металла
Нагартовка — это полезный процесс, при котором уплотняются верхние слои металла. Такой уровень упрочнения не приводит к появлению трещин и разрушению верхних слоёв. Снаружи металла появляется «корка», которая защищает деталь при эксплуатации. После нагартовки не нужна последующая механическая обработка металла.
В отличие от нагартовки вредный наклёп требует снятия возникших в верхних слоях напряжений. Металлу устраивают «баню», нагревая поверхность до величины в 40–60% от температуры плавления. При остывании происходит рекристаллизация, восстанавливается обычная структура зёрен, напряжений больше нет и можно проводить дальнейшую механическую обработку деталей, не ломая инструмент.
Полезный наклёп (нагартовка) и вредный наклёп возникают в результате пластической деформации верхних слоёв металла только в результате холодной обработки давлением. «Холодный» – подразумевает температуру окружающего воздуха. Справочники говорят нам о допустимой верхней температуре — не больше температуры «рекристаллизации».
Важной особенностью пластической деформации является отсутствие разрушения. Пластичность оценивается величиной относительного удлинения стандартного образца при разрыве. Эта величина составляет 10–50%. К сплавам, обладающим высокой пластичностью, относятся низкоуглеродистые стали (содержание углерода 0,25%), сплавы алюминия, меди (латуни), многие легированные стали.
Какими же бывают виды холодной обработки металла давлением, запускающие процесс нагартовки в металле?
Холодная ковка
Оборудованием служат пневматические молоты при весе заготовок от 0,3 до 20 кг, паровоздушные молоты для заготовок 20–350 кг, гидравлические прессы для обработки деталей весом до 200 тонн.
Холодную ковку включают в технологию обработки, если нужно:
Холодная прокатка
Это самый распространённый способ нагартовки. Так получают длинные заготовки — трубы, рельсы, профили строительных конструкций. Прокаткой получают листовой металл, используемый в машиностроении. Примером холодной прокатки может служить алюминиевая фольга толщиной до 0,001 мм, получаемая из чистого алюминия.
Холодное прессование или штамповка
Есть два вида — объёмная и листовая штамповка.
При объёмной штамповке можно делать:
Выдавливание производят на прессах в штампах, имеющих пуансон и матрицу. Исходной заготовкой служит пруток или лист. Если делают прямое выдавливание, то получают болты и клапаны. Обратным выдавливанием изготавливают полые детали. При боковом выдавливании производят различные тройники и крестовины. В сложном изделии, выдавливание делают комбинированным.
Только этот вид штамповки позволяет получить максимальную деформацию поверхности без её разрушения.
Холодная высадка — самый высокопроизводительный способ изготовления продукции. Процесс поддаётся автоматизации, поэтому в минуту можно получить от 20 до 400 деталей. Исходным материалом здесь служит пруток или проволока диаметром 0,5–40 мм. В высадке есть потребность при выработке деталей с местным утолщением: заклёпок, болтов и винтов, гвоздей, шариков, звёздочек и накидных гаек. Коэффициент использования металла достигает 95%.
Процесс холодной формовки аналогичен горячей штамповке. Однако здесь нужны более высокие усилия, потому что материал имеет низкую формуемость из-за упрочнения и действия сил трения. Обычно так получают детали из цветных металлов.
При холодной листовой штамповке заготовками служат листы, полосы или ленты толщиной не более 10 мм.
У листовой штамповки есть много преимуществ:
При листовой штамповке деформации можно подвергать всю заготовку (отрезка и вырубка) или её часть (гибка, вытяжка и формовка).
Холодное волочение
Если нужно уменьшить диаметр и уплотнить поверхность проволоки для повышения её прочностных характеристик, применяют волочение. Это единственный способ нагартовки больших объёмов проволоки. В отличие от прокатки, где инструментом служат вращающиеся валки, в волочении для обжатия используют неподвижную матрицу с фильерами. За один цикл нельзя значительно сократить диаметр изделия, потому что тянущее усилие приложено к его тонкому концу.
Волочильные станы позволяют получать проволоку диаметром от 1 микрона до 6 мм.
Редуцирование
При этом способе нагартовки заготовка помещается между вращающимися обжимными валами или вращающаяся заготовка формуется под действием пуансона. В процессе вращения и обжима происходит изменение формы поверхности детали и её уплотнение.
На резьбонакатных станках получают заготовки с наружной и внутренней резьбой М3 — М68, используя для этого накатные ролики или оправки. При редуцировании труб происходит в основном закатка или раскатка концов на длину до 200 мм. Правка заготовок нужна для выправления геометрической оси изделия. Гибку заготовок используют для получения пружин разного диаметра.
Как оказалось, нагартовка очень интересный, полезный и распространённый способ деформации металлов, который позволяет значительно увеличить эффективность металлообработки.
Это интересно: Термообработка металла
Обозначение состояний алюминиевых сплавов
Для обозначения всех состояний алюминия и алюминиевых сплавов (и не только нагартованных) во всем мире широко применяется американская система обозначений, разработанная в свое время Американской Алюминиевой Ассоциацией.
Состояние материала в горячепрессованном состоянии без дополнительных обработок – термических или деформационных – обозначается стандартах В и ISO буквой F и никакие цифры за ней не следуют. В отечественных стандартах это состояние идет вообще без обозначения.
Состояние полностью отожженного материала обозначается буквой
«О» (не ноль) по международной классификации состояний алюминия и алюминиевых сплавов или «М» – по отечественным ГОСТам. Буква О с дополнительной цифрой относится к отжигу со специальными условиями.
Все обозначения нагартованных состояний начинаются с латинской буквы «Н». За ней могут идти от 1 до 3 цифр.
Виды алюминиевых листов
Алюминиевые листы отличаются не только использованием сплавов различных марок, способом производства, но и методом дополнительной обработки. Согласно состоянию материала можно выделить следующие виды:
— естественно состаренный и закаленный (Т);
— без термической обработки.
Также алюминиевый лист различают по типоразмеру – повышенной и обычной точности толщины, что обозначается в маркировке буквой «П». И по способу производства: алюминиевый лист с технологической (Б), нормальной плакировкой (А) и без плакировки.
Зависимо от вида поверхности листовой алюминий может быть: стандартным, антискользящим, профилированным, перфорированным, гофрированной фольгой.
Стандартный алюминиевый лист (общего и специального назначения)
Стандартный прокат имеет гладкую поверхность с повышенной, высокой или обычной отделкой. Его преимущественно используют для производства нержавеющих конструкций, применяемых в топливной, пищевой и химической промышленностях, в строительстве, а также машиностроении. Изготовляется из алюминия и его сплавов марок: А5, 1105, АД, АМг1, АМг3, А6М, АМг2, АМг5, АМц, АМг6, АД1, ВД1, Д16 и других.
Лист алюминиевый А5
Пищевой лист А5 имеет матовую поверхность, толщину от 0,5 до 10 миллиметров, обычное качество отделки. Химический состав алюминия марки А5 соответствует ГОСТ 11069-74. Алюминиевый лист А5 можно купить в рулонах и листах. Характеризуется высокой теплопроводностью, коррозионной стойкостью. Благодаря высоким пластическим свойствам металлопрокат марки А5 легко формуется разными способами и обрабатывается. Материал хорошо сваривается. При низких температурах технические характеристики остаются практически неизменными.
По состоянию металла алюминиевые листы подразделяют на нагартованные (А5Н) и мягкие или отожженные (А5М).
Термообработка оказывает значительное влияние на физические и механические свойства, меняет структуру сплава. Пластичность и ковкость алюминиевые листы А5М приобретают в результате отжига, изделия легче поддаются резанию. Для того, чтоб частично восстановить твердость, металл подвергают прокатке с 2-5% обжатием – дрессировке. Алюминиевые листы повышенной прочности А5Н получают путем холодной обработки давлением, но при этом уменьшается ударная вязкость и пластичность.
Используются листы А5 в различных областях промышленности для производства конструкций и оборудования. Из них изготавливают пищевые емкости, обшивочные покрытия, элементы декора.
Лист алюминиевый А6М
Отожженный алюминиевый лист А6М изготавливается в соответствии с ГОСТ 21631-76, подходит для использования в пищевой отрасли. Состав алюминия А6 контролируется ГОСТ 11069-74.
Алюминиевый лист 1105
Алюминиевый прокат 1105 представляет собой плоский сортамент из деформируемого алюминия с легирующими присадками магния и меди. Дюраль обозначают первые две цифры (11), а порядковый номер сплава – последние. Из листового алюминия 1105 изготавливают сварные конструкции и детали, которые эксплуатируются при низких температурах. Изделия характеризуются высокой вязкостью разрушения, пластичностью, легко поддаются механообработке.
Алюминиевый лист 1105Н — упрочненный пластической деформацией нагартованный прокат. Свойства и структура меняются под воздействием на его поверхность давления. В результате уменьшается ударная вязкость и пластичность, а повышается прочность и твердость. Лист алюминия нагартованный с нормальной плакировкой отличается значительными показателями химической пассивности и маркируется 1105АН.
Зависимо от требований, предъявляемых к готовому изделию, можно применить утолщенную плакировку, что в значительной степени скажется на защищенности материала.
Алюминиевый лист 1105М — пластичный, ковкий и мягкий листовой металлопрокат, отожженный при высокой температуре. Прокатка на прокатном стане с 2-5% обжатием (дрессировка) способствует частичному восстановлению твердости. Алюминиевый лист с утолщенным плакировочным слоем маркируется 1105УМ, а с нормальным – 1105АМ. Характеризуется повышенной устойчивостью в агрессивных условиях эксплуатации.
Алюминиевый лист 1105Т – естественно состаренный, закаленный алюминиевый сортамент, востребованный во многих отраслях промышленности. С нормальной плакировкой обозначается 1105АТ.
Алюминиевый лист АД
Отличается высокой пластичностью и стойкостью к коррозии. В качестве материала для изготовления листов используется технический алюминий с небольшим содержанием примесей. Подразделяется на мягкий (АДМ) и нагартованный (АДН). Алюминиевый лист АД широко востребован в качестве полуфабриката во многих отраслях промышленности.
Листовой алюминий АД1
Представлен в виде рулонов и листов. Производятся из алюминия марки АД1 согласно ГОСТ 21631-76, химический состав по ГОСТ 4784-74. Характеризуются легкостью формовки и механообработки, высокой устойчивостью к процессам коррозии. Цифровая маркировка определяет чистоту сплава в процентах, а буквенная – деформируемый металл.
Алюминиевый лист АД1 по состоянию материала принято классифицировать на АД1М (мягкий) и АД1Н (нагартованный). Нагартованный на одну вторую лист маркируют как АД1Н2. Он совмещает в себе высокие механические и прочностные свойства. Мягкую и нагартованную продукцию используют для производства конденсаторов, декоративной отделки, емкостей в химической промышленности, различного рода деталей.
Алюминиевый лист АМг1
Легируемый магнием деформируемый сплав. Цифра определяет количество основной легирующей присадки, в данном случае – 1% магния. Характеризуется отличной свариваемостью, пластичностью, устойчивостью к коррозии. Используется для изготовления промышленных деталей и конструкций в строительстве. Различают мягкий и нагартованный лист АМг1.
Алюминиевый лист АМг2
По характеристикам схож с АМг1, но содержит 2% магния. Хорошо обрабатывается резанием. Различают нагартованный, отожженный и полунагартованный металлопрокат АМг2. Из рафинированного и нагартованного сплава производят алюминиевые листы АМг2НР. Благодаря низкому содержанию посторонних примесей полуфабрикаты обладают хорошей электропроводностью.
Поверхность неплакированная, рифленая или матовая.
Из отожженных и нагартованных алюминиевых листов АМг2 изготавливают обшивки грузовых авто, оборудование для гидравлики, химические емкости, которые работают под давлением, промышленные трубопроводы, транспортные детали и различные строительные конструкции.
Алюминиевый лист АМг3
Содержание в сплаве легирующей добавки (магния) – 3%. Поставляется металлопрокат АМг3 в рулонах и листах. Обладает хорошей пластичностью, коррозионной стойкостью и свариваемостью. Подразделяют на АМг3М (отожженный) и АМг3Н (нагартованный). Из полунагартованного и рафинированного сплава получают листы АМг3Н2Р. Поверхность без плакировки, рифленая либо матовая.
Применяется для производства конструкций средней прочности, сварных баков, промышленных трубопроводов и оборудования для гидравлики, каркасов и обшивки железнодорожных вагонов.
Алюминиевый лист АМг5
Содержит в своем составе 5% магния, различают нагартованный и отожженный полуфабрикат АМг5. Служит основным материалом при производстве химических сосудов, работающих под давлением, трубопроводов, сварных внешних конструкций, обшивки речных и морских судов, самолетов и грузовых автомобилей.
Листовой алюминий АМг6
Деформируемый сплав содержит 6% магния. По состоянию материала различают отожженные и нагартованные листы АМг6. Встречаются полуфабрикаты АМг6БМ (с технологической плакировкой) и неплакированные. Сфера применения, как и у АМг5.
Алюминиевый лист АМц
Содержит в своем составе от 1 до 1,6% марганца. Хорошо поддается свариванию, прокат пластичен и стоек к процессам коррозии. Различают отожженный (АМцМ), нагартованный (АМцН) и нагартованный на одну вторую сплава (АМцН2). Листовой алюминий АМц неплакированный, с матовой поверхностью. Сфера применения включает производство обшивки судов, строительных конструкций, радиаторов, емкостей для напитков, элементов декора, химических сосудов, работающих под повышенным давлением.
Алюминиевый лист ВД1
ВД1 изготавливается из дюралевого деформируемого сплава повышенной прочности, легированного магнием и медью. Материал пластичен, хорошо обрабатывается и устойчив к коррозии. Для повышения коррозионной стойкости прокат дополнительно плакируют, т.е. покрывают тонким слоем чистого алюминия. Поэтому по способу производства различают плакированный и неплакированный прокат ВД1.
По состоянию сплава различают алюминиевые листы ВД1:
— закаленные и естественно состаренные (Т).
Термообработка оказывает значительное влияние на механические, физические свойства материала, меняет его структуру. После отжига у алюминиевых листов ВД1АМ повышается ковкость и пластичность. Металл легче резать. Прокат повышенной прочности ВД1АН изготавливают путем холодной деформации, ударная вязкость и пластичность при этом уменьшаются. ВД1АН2 производят из сплава полунагартованного с нормальной плакировкой. Данные алюминиевые листы совмещают отличные механические и противокоррозионные свойства. ВД1НР – очищенный и нагартованный сплав с хорошим показателем электропроводности за счет малого содержания в составе посторонних примесей.
Максимальная прочность ВД1АТ достигается за счет закалки и естественного состаривания.
Матовые и рифленые алюминиевые листы ВД1 применяются для обшивки деталей реактивных двигателей, грузовых автомобилей, производства различных строительных конструкций. Эксплуатируются в условиях повышенной температуры.
Лист алюминиевый рифленый
С рифленой поверхностью разных форм, предназначенным для декора входных и лестничных конструкций. Изготовляется из деформируемых сплавов марок АМг2Н2, АМг2НР, ВД1НР. Имеет матовую поверхность, чечевичное, ромбическое, рифление дуэт, алмаз, квинтет и другие. Толщина материала от 1,5 до 4 миллиметров без учета высоты выпуклостей. Используется для изготовления облицовочных, противоскользящих и декоративных покрытий. В сфере автомобилестроения для производства порогов и ступеней.
Профилированный (гофрированный) алюминиевый лист
Применяется для создания ограждающих конструкций, отделки кровельных систем, фасадов зданий. Материал для его изготовления — сплав алюминия марки 1105АН2 в соответствии с ТУ 1-3-143-93 и ТУ 1-801-14-2001. Имеет толщину 0,7 мм, ширину – 1,2 м, длину – 20м. Благодаря небольшому весу часто используется для реконструкции старых зданий, отличающихся неспособностью выдерживать значительные нагрузки. Стойкий к повышенной влажности, гибкий, что дает возможность проводить кровельные работы со сложным дизайном. Волнообразный трапециевидный и овальный профиль поставляется в рулонах.
Перфорированный алюминиевый лист
Является основой для выполнения практичных декоративных проектов. Может иметь круглые отверстия со структурными (Rsg), прямыми (Rg) и смещенными рядами (Rv), квадратные с ромбовидными (Qd), смещенными (Qv) и прямыми рядами (Qg), а также овальные со смещенными (Lv) и прямыми (Lg), поворотом через ряд. Толщина металла от 0,8 до 3 миллиметров.
Гофрированная алюминиевая фольга
Используется при изготовлении вентиляционных систем (гофрированных воздуховодов).
Только нагартовка – серия Н1
Чисто нагартованные состояния без дополнительных обработок образуют серию Н1. Полностью нагартованным состоянием материала, которое обозначают Н18, называют состояние, полученное при холодной деформации эквивалентной относительному обжатию при прокатке 0,75. Относительное обжатие – это отношение разности толщин исходного и конечного листа к исходной толщине листа. Относительная вытяжка 0,75 будет достигаться, например, при исходной толщине 10 мм и конечной толщине 2,5 мм: (10 – 2,5)/10 = 0,75. Состояние Н19 обозначает изделия с еще большей степенью нагартовки, чем в состоянии Н18. Оно применяется, например, для ленты толщиной 0,30 мм из алюминиевого сплава 3104 для изготовления корпуса пивной банки. Состояния Н16, Н14 и Н12 получают при меньшем количестве холодной деформации и они представляют, соответственно, тричетвертинагартованное
,
полунагартованное
и
четвертьнагартованное
состояния.
Виды наклепа
Деформационное упрочнение металла классифицируют по процессам, которые активизируются в заготовке во время образования наклепанного слоя.
В случае образования новых фаз, отличающихся иным удельным объемом, явление называют фазовым. Если причина изменений – действие внешних сил, наклеп называют деформационным.
Существует две категории:
Рассмотрим характерные изменения материала, которые происходят при деформационном упрочнении. В результате действия внешних сил элементы внутренней структуры начинают активно перемещаться, что приводит к искажению внутри кристаллической решетки. При этом зерна, ориентация которых носит беспорядочный характер, приобретают четкую структуру – наиболее прочная ось кристаллов будет располагаться вдоль направления деформирования.
Во время изучения явления некоторые специалисты высказали мнение, что под действием внешних сил зерна металла дробятся, а это приводит к измельчению структуры. На самом деле они лишь деформируются, сохраняя прежний объем.
Состояния алюминия H111 и H112
При указании требований к механическим свойствам алюминия и алюминиевых сплавов часто употребляют обозначения состояний Н111 и Н112 из той же серии Н1. Состояние Н111 отличается от отожженного состояния О только небольшой степенью нагартовки, которую мог получить материал при правке или других технологических операциях. Состояние Н112 отличается от состояния F только небольшой степенью нагартовки (при горячей или холодной обработке), а также обязательным контролем механических свойств.
Возврат и рекристаллизация деформированного алюминия
Дислокации, которые возникли при нагартовке алюминия, можно удалить путем нагрева нагартованного металла до умеренно высокой температуры, например, 345 °С. Это заставляет алюминий снова стать мягким и восстанавливает его пластичность. Этот нагрев называют отжигом
. Изменения микроструктуры, которые происходят в ходе отжига, называют
возвратом
и
рекристаллизацией
. В ходе деформации при повышенных температурах обычно происходят процессы восстановления. Их называют
динамическим возвратом
и
динамической рекристаллизацией
.
Благодаря этим процессам алюминий не нагартовывается так сильно как при комнатной температуре и требует для деформирования намного более низкие нагрузки. Уже при температуре 200 ºС чистый алюминий почти полностью теряет способность к нагартовке. При умеренных пластических деформациях алюминиевых сплавов дислокации в них распределяются неоднородно, а формируют ячейки со стенками из перепутанных дислокаций и малой плотностью дислокаций внутри ячеек. Обычно эти ячейки имеют диаметр порядка 1 микрометра. Когда происходит возврат, стенки ячеек становятся границами так называемых субзерен
. При отжиге алюминия или алюминиевого сплава после большого объема холодной пластической деформации происходит процесс рекристаллизации с образованием новых зере
*Предлагаемые к заключению договоры или финансовые инструменты являются высокорискованными и могут привести к потере внесенных денежных средств в полном объеме. До совершения сделок следует ознакомиться с рисками, с которыми они связаны.
Нагартовка и отжиг – серия Н2
Серия Н2 относится к материалам, которые были нагартованы до более высокой степени, чем это нужно было бы для заданных прочностных свойств, а затем снижают эту «лишнюю» прочность снимают с помощью частичного отжига. С увеличением степени нагартовки вторая цифра возрастает от 2 до 8 аналогично чисто нагартованным состояния: Н22, Н24, Н26 и Н28.
На рисунке схематически показаны нагартованные состояния серий Н1 и Н2 при различной степени нагартовки и различных длительностях отжига при постоянной температуре. Бывают аналогичные графики в зависимости от температуры отжига. У состояний с одинаковыми вторыми цифрами пределы прочности – одинаковые, а предел текучести у состояний с частичным отжигом ниже, чем у чисто нагартованных состояний. График роста прочности от степени холодной деформации имеет выпуклость вверх. Это отражает тот факт, что первые стадии холодной деформации дают максимальный прирост прочности.
Сущность наклепа и нагартовки
Наклеп металла является одним из способов упрочнения металлического изделия. Происходит это благодаря пластической деформации, которой такое изделие подвергают при температуре, находящейся ниже температуры рекристаллизации. Деформирование в процессе наклепа приводит к изменению как внутренней структуры, так и фазового состава металла. В результате таких изменений в кристаллической решетке возникают дефекты, которые выходят на поверхность деформируемого изделия. Естественно, эти процессы приводят и к изменениям механических характеристик металла. В частности, с ним происходит следующее:
Упрочнение поверхности металла можно оценить по изменению микротвердости, уменьшающейся про мере удаления от поверхности
Явление наклепа, если оно относится к ферромагнитным материалам (например, к железу), приводит к тому, что у металла увеличивается значение такого параметра, как коэрцитивная сила, а его магнитная проницаемость снижается. Если наклепанная область была сформирована в результате незначительной деформации, то остаточная индукция, которой характеризуется материал, снижается, а если степень деформации увеличить, то значение такого параметра резко возрастает. Из положительных последствий наклепа следует отметить и то, что с его помощью можно значительно улучшить эксплуатационные характеристики более пластичных металлов, создающих значительное трение в процессе использования.
Наклепанный слой на поверхности металлического изделия может быть сформирован как специально, тогда такой процесс является полезным, так и неумышленно, в таком случае его считают вредным. Чаще всего неумышленное поверхностное упрочнение металлического изделия происходит в процессе обработки резанием, когда на обрабатываемый металл оказывается значительное давление со стороны режущего инструмента.
Упрочнение (наклеп) при обработке резанием
Увеличение прочности приводит к тому, что поверхность металла становится и более хрупкой, что является очень нежелательным последствием обработки.
Если формирование наклепа может произойти в результате как осознанных, так и неосознанных действий, то нагартовка всегда выполняется специально и является, по сути, полноценной технологической операцией, цель которой состоит в поверхностном упрочнении металла.
Деформационное уплотнение кромки этого затвора произошло в результате эксплуатации, значит – это наклеп
Серия Н3 – для сплавов алюминий-магний
Серия Н3 – состояния с нагартовкой и стабилизирующей обработкой: Н32, Н34, Н36 и Н38. Эту серию состояний применяют только для алюминиево-магниевых сплавов – сплавов серии 5ххх. Дело в том, что в нагартованном состоянии эти сплавы в течение некоторого времени могут терять, достигнутые нагартовкой прочностные свойства, за счет механизма естественного старения. Поэтому, если стабильность прочностных свойств важна, их часто нагревают до умеренных температур, например, 220 °С, чтобы завершить этот процесс старения, при этом несколько снизить прочность, но повысить пластичность и, тем самым, обеспечить последующую стабильность механических свойств и рабочих характеристик.
Дислокации в алюминии
При разливке алюминиевых слитков первичные кристаллы растут из жидкой фазы и литая микроструктура обычно очень грубая. Когда алюминий пластически деформируют, каждое зерно деформируется путем движения линейных дефектов своей кристаллической решетки. Деформация происходит за счет проскальзывания
по
плоскостям скольжения
вдоль направлений сдвига. Эти дефекты называют
дислокациями
(рисунок 1). Дислокации двигаются по некоторым кристаллографическим плоскостям в кристалле – так называемым «плотно упакованным плоскостям», которые известны как плоскости скольжения. Движение одной дислокации производит единичную сдвиговую деформацию, а объединенное движение сотен тысяч дислокаций — полную деформацию.
В ходе деформации при комнатной температуре число дислокаций возрастает и им становится трудно двигаться сквозь атомную решетку. В этом случае говорят, что алюминий «получил нагартовку», «получил деформационное упрочнение» или даже «наклепался», а такой алюминий или алюминиевый сплав называют нагартованным. Это означает, что для продолжения деформации требуется все большие усилия, а алюминий постепенно теряет пластичность, что, в конечном счете, приведет к образованию в нем трещин и его разрушению.
В это время на атомном уровне происходит следующее. В ходе деформации скольжение дислокаций происходит очень активно и движущиеся дислокации различных плоскостей скольжения начинают взаимодействовать друг с другом, перепутываться между собой и образовывать так называемый «лес» дислокаций. С увеличением плотности дислокаций возрастает предел текучести материала — где-то прямо пропорционально корню квадратному из плотности дислокаций.