литий титанат или литий железо фосфат что лучше
105. Питание — всему голова или литию быть в моей системе.
Привет!
Как известно, хорошее питание AV (audio&video)-системы крайне необходимая вещь!
Поэтому, еще в первой своей инсталляции был заменен штатный аккумулятор 65 A*ч на АГМ 120 A*ч.
Подробно писал об этом в своем бортовике еще давным давно. К слову сказать, Стингер прослужил 6 лет без проблем при нещадной эксплуатации и был заменен на аналогичный перед соревновательным сезоном летом в 2017 году.
Сейчас в моей системе множество потребителей, в среднем, потребляется 25-35 А в час. И иногда вопрос своевременной зарядки стоит остро.
А учитывая, что в скором времени, система будет потреблять в 2 раза больше, то емкость аккумулятора уже не будет хватать более чем на час.
Соответсвенно, нужен аккумулятор еще большей емкости.
Думали над несколькими вариантами:
1. добавить такой же аккумулятор в подкапотное пространство, убрав воздушный фильтр — получил бы 240 А*ч от АГМ аккумуляторов.
2. Много место в ногах задних пассажиров — собрать кирпичиками из АГМ секций слева и справа — набрали бы порядочно.
3. Поставить к АГМ аккумулятору секции литий железо фосфата (LiFePO4) под ноги задним пассажирам.
4. Тоже, что и 3, но вместо LiFePO4 — литий титанат (LTO66160).
5. Поставить LiFePO4 или LTO66160 сразу в подкапотное пространство.
Взвесив за и против, вместе с Саней Martyanov ым, также проконсультировавшись с Дмитрием Бекреневым boombox61 и Виталием, аka dedvitos решили ставить железофосфат сразу в подкапотное пространство. Место там у аутлендера полным полно! Особенно, если убрать штатный воздушный фильтр и заменить его холодным впуском, либо применить более компактные воздушные фильтра — например от Honda CRX.
Почему решили остановиться именно на железофосфате, а не на титанате, ведь сейчас идет поголовное увлечение SPL-щиков титанатом, тем более он дешев и обладает колоссальной токоотдачей и легко переносит морозы:
1. LiFePO4 работает в морозы, просто падает токоотдача, в сети полно графиков, кто хочет, тот найдет. Я буду ставить секцию 500 А*ч — если, он не разряжен, то его за глаза хватит, чтобы завезти машину ВСЕГДА.
2. Мне нужна емкость, а не скорость отдачи — поэтому LiFePO4.
3. LiFePO4 занимает существенно меньше места, чем LTO66160, так как титанат собирается из цилиндрических банок. А теперь представтье сколько места будет занимать LTO66160 550 А*ч — это 60 банок размерами 66*320 мм.
4. LTO66160 — температура эксплуатации не более 60гр. по Цельсию, LiFePO4 — 80 гр. — это критично для установки в подкапотное пространство, особенно летом в жару и в пробках.
5. LTO66160 — титанат горит, и очень хорошо, хотя железо фосфат тоже. Но LiFePO4 имеет прочные секции, а банки LTO66160 имеют синюю термоусадку снаружи, и не дай Бог, банки перетрутся друг об друга — будет пожар, который не потушишь. Соотвествено, титанат очень требователен к сборке.
Рекомендую к просмотру краш тест банки титаната.
Мог бы и более развернуто написать про плюсы и минусы использования LiFePO4 и LTO66160.
Но ограничимся, как раз повод для обсуждения в комментариях)))
Кстати, кому интересно — по ссылке FAQ по использованию литий-титаната LTO66160.
А я же прошу посмотреть парочку видео, как искал пространство для аккумуляторной батареи — это забавно!) Рекомендую слушать в наушниках, так слышно лучше.
Переход на Лифер (LiFePo4 аккумулятор вместо свинца)
Уже года 3 смотрю на лиферные аккумуляторы и давно хочу себе поставить в Раннера, но что-то всё никак. Дорого, непонятно… В итоге приобрёл Optima Yellow Top 75 и был счастлив (пост про Оптиму). Она и стартер крутит бодро, и лебедку хорошо! Но хоть я и поднял напряжение на генераторе до 14.6 Вольт (Как получить 14.6 Вольта с генератора Toyota), зимой Оптима всё равно не успевала зарядиться и иногда подводила меня, разряжаясь до неспособности крутануть стартер на морозе.
В общем пришло время, и по совету уважаемого Алексея avgefke я приобрёл ячейки фирмы CALB LiFePo4 (модель CA100, то есть на 100Ач).
Много полезной информации по Лиферу можно найти на трубе у ЛитийМастера — категорически рекомендую: Lithium Master
В общем решено — ставим Лифер в автомобиль, причем без BMS (так как нужны большие токи для лебедки) и без балансиров (так как они особо и не нужны).
Кстати, предварительные замеры внутреннего сопротивления даже не заряженных ячеек показали вполне хорошие результаты:
1) 3.22 В и 220 мОм
2) 3.26 В и 179 мОм
3) 3.29 В и 345 мОм
4) 3.21 В и 205 мОм
Как предварительно зарядить и сбалансировать ячейки очень хорошо показано в этом видео:
После параллельной зарядки до напряжения 3.6В собираем ячейки последовательно в 13вольтовый аккумулятор с помощью толстых медных шин и болтов из нержавейки:
Между собой ячейки скрепил двусторонним скотчем, который держит высокую температуру (на всякий) и обмотал прочной лентой. После уже завернул в термоусадку, толстую и прочную.
В сравнении с AGM аккумулятором Optima Yellow Top 75, который весит 27.1 Кг, полученная сборка Лифера весит всего 14.1 Кг, то есть практически в 2 раза меньше! Думаю подкрылок Раннера скажет мне спасибо за такое облегчение 🙂
В общем я получил 100 Ач литий-железо-фосфатный аккумулятор с отличными характеристиками, можно ставить в Раннер. Крепёж чуть доработал, подложил проставки, плюс под термоусадкой аккумулятора тоже проставки, чтобы крепёж не давил на медную шину. В общем всё в порядке, аккум закреплен хорошо.
Езжу с ним уже неделю и радуюсь. Напряжение после 3х суток простоя 13.2 Вольта, ничего не проседает, заряжается быстро. Лебедку крутит бодро, но с нагрузкой пока не тестировал — всё ещё впереди.
Теперь пора покупать холодильник, который можно будет оставлять работать всю ночь — аккум выдержит легко и после этого заведет двигатель. Я счастлив!
P.S. Диод, повышающий напряжение с генератора, я убрал, так как для Лифера опасен перезаряд (без BMSа).
UPD 27.08.2021 Добавил изоляционную резину сверху аккумулятора, закрыл плюсовой контакт, на крепление надел разрезанный шланг. Теперь можно в ралли 😉
Проверил работу лебедки под нагрузкой — Лифер тащит, напряжение даже на холостых оборотах не проседает ниже 13.0 Вольт! Я доволен.
Запчасти
Toyota 4Runner 2004, двигатель бензиновый 4.0 л., 245 л. с., полный привод, автоматическая коробка передач — тюнинг
Машины в продаже
Комментарии 116
Луженые шины рекомендуют в таком случае. И крепление провода к клемме на болтик М6 в алюминий. кажется слабым звеном.
Медные перемычки с алюминиевыми клеммами это не гальваническая пара?
Не знаю, посмотрим что будет.
нормальная бмс не только балансирует, но следит за температурой, напряжением каждой параллели и даже вырубается при превышении выставленных порогов тока.
Если что, у меня сборка из 8 таких ячеек, правда новых.
Изначально взял доп 4 ячейки про запас, если вдруг будет не хватать. Это у меня салонная сборка + под лебедку на зад, под капотом другой. Но, потом я увидел ток который идет с генератора на доп аккум (есть на фото). Это притом, что до аккума еще 5 метров всяких соедининений, реле и пр. А если посмотреть datasheet, то станет видно, что номинальный ток зарядки для них — 0.25c, т.е. 25 ампер.Можно ознакомится тут —
www.calbusainc.com/additional-information/, параметр standart charge — 4 hours. Потому я решил поставить по 2 ячейки в параллель. Далее, смотрим температуру работы. Заводом прописано charge 0-45 градусов. Опять плохо ему под капотом.
А вот токи и температурный режим у LTO подходит под капот.
В общем на канале разжевано, вот финал теста в 14 месяцев.
А, бмс годные например «daly BMS 4S LiFePo4 300A», на машину common порт нужен, если напрямую заряжать от борт сети.
Только ценник не порадует.
Lifepo4 нельзя заряжать при температуре ниже 0 градусов. В спецификации ясно все производители указывают на это, а если где и написано, что можно, то скромно умалчивается, что мизерными токами и под контолем электроники 1. Деградация ёмкости не восстанавливаемая 2. Образуются дендриты, со временем, что может привести к внутреннему короткому замыканию. При взрыве банки гнет даже 6 мм. железо с приваренным ребром жёсткости.
Я его утеплил, скоро напишу.
Lifepo4 нельзя заряжать при температуре ниже 0 градусов. В спецификации ясно все производители указывают на это, а если где и написано, что можно, то скромно умалчивается, что мизерными токами и под контолем электроники 1. Деградация ёмкости не восстанавливаемая 2. Образуются дендриты, со временем, что может привести к внутреннему короткому замыканию. При взрыве банки гнет даже 6 мм. железо с приваренным ребром жёсткости.
Уже год катаюсь на с lifepo4 в ауди а6 и точно знаю, что без бмс никак нельзя. Все равно банки разбегаются без бмс. Да и за 2500-3000 руб можно купить прекрасную бмс, которая потянет и стартер и лебедку. Я думаю, что автор это уже понял.
БМС только предохраняет от перезаряда и недозаряда, она ничего не балансирует, ты запутался.
У товарища за год банки не разбежались, потому что работают в буферном режиме, а не в режиме полный разряд-полный заряд. Так что пока не найду хорошие пассивные балансиры ничего ставить не буду!
Ну вот когда найду хорошие пассивные балансиры тогда и поставлю.
Уже год катаюсь на с lifepo4 в ауди а6 и точно знаю, что без бмс никак нельзя. Все равно банки разбегаются без бмс. Да и за 2500-3000 руб можно купить прекрасную бмс, которая потянет и стартер и лебедку. Я думаю, что автор это уже понял.
[54]-[Автозвук]-F.A.Q. по Литий Титанату (LTO)
Доброго времени суток. Сегодня речь пойдет о достаточно известных в узких кругах любителей громкой музыки и неизвестных для других видах аккумуляторных батарей (далее — АБ) — Li4Ti5O12 (далее — LTO/литий титанат). Будут рассмотрены некоторые интересующие вопросы, развеяны мифы, распространяемые теми людьми, которые об LTO знают только из статей в интернете.
1. Что такое LTO?
Литий титанат (АБ) – вариант литий-ионных аккумуляторов, использующий титанат лития (Li4Ti5O12) в качестве анода. Для увеличения площади анод имеет нано кристаллическое строение. Такое решение позволяет обеспечить площадь поверхности анода до 100 м2/г, по сравнению с 3 м2/г для углерода, что позволяет значительно увеличить скорость перезарядки и обеспечить высокую плотность тока. Кроме того, эти аккумуляторы имеют высокую надежность и могут работать при более низких температурах, чем классические литий-ионные (-30 °C).
Недостатком литий-титанатных аккумуляторов является более низкое рабочее напряжение (2,4 В), чем у обычных литий-ионных, имеющих стандартное напряжение 3,7 В.
2. Как скоммутировать литий титинат и виды коммутации АБ?
Сколько АБ обычно установлено в гражданском автомобиле? Кто то скажет одна, ну две максимум. В моем авто на данный момент установлено 12 Аккумуляторов или 2 АБ. По сути так и есть. Т.к. у одной «банки» (отдельно взятой АБ LTO) рабочее напряжение в среднем 2,3 В-2,4 В, то для коммутации в авто, для достижения рабочего напряжения необходимо соединить последовательно 6 отдельно взятых аккумуляторов.
Данное соединение характеризуется тем, что суммарное напряжение АБ увеличивается кратно количеству используемых аккумуляторов. Т.е. 6 аккумуляторов по 2,3 В дает суммарное напряжение секции при последовательном соединении 13,8 В. Кто еще не понял в чем различия прикладываю схему. Как можно заметить. «плюсовой» токовывод одной АБ соединяется с «минусом» токовывода другой АБ и так далее.
Две такие сборки с емкостью 30Ач и напряжением 13,8 В я соединил параллельно, т.е. главный «плюсовой» токовывод одной секции соединил с другим главным «плюсовым» токовыводом другой секции, аналогично поступил с минусом. Хотя его можно было и не протягивать т.к. есть любители «брать минус» с кузова. В случае с титанатом хватает одной протяжки провода.
3. Как защитить соединение АБ?
Т.к. две секции разнесены по разным частям авто (одна АБ установлена в багажнике, а другая под капотом в штатном месте) – то в обязательном порядке необходимо защитить соединение предохранителями. Предохранители должны быть, установлены не дальше 30 см от АБ, как задней, так и передней. Что же дает такая защита и зачем устанавливать два предохранителя. В первую очередь стоит отметить, что предохранитель защищает не потребитель тока, а провод. Два предохранителя обеспечат разрыв сети, в случае короткого замыкания, как от первой АБ, так и от второй, предотвратив возможность нагрева и возгорания кабеля, протянутого по салону.
4. Что нужно сделать перед коммутацией литий титаната?
Как сказано выше, каждая взятая «банка» литий титаната – это отдельно взятый аккумулятор. У каждой «банки» есть свои характеристики, перед зарядкой всех «банок» рекомендуется уравновесить их заряд до одинаковых величин. Для этого необходимо подключить 6, 12, 18 или более кратное количество «банок» вместе параллельным соединением. Это можно сделать при помощи обычного провода. Я использовал акустический провод 1,5 мм, плюс одной «банки» был подсоединен к плюсу другой «банки», так же нужно сделать с минусовыми выводами. Напряжение от более заряженной «банки» будет распределяться на менее заряженные «банки», как следствие напряжение уравнивается. Процесс не быстрый, все зависит от разбега напряжения в «банках». Я оставлял на ночь.
5. Чем соединять «банки» между собой?
Начнем с минусов. В отличие от литий железофосфата, у которого используются медные токовыводы, у титаната они алюминиевые. Как следствие для соединения «банок» необходимо использовать алюминиевые шины, которые в свою очередь обладают более плохими токопроводящими качествами, чем медь из-за большего удельного сопротивления практически в два раза: алюминий 0,027 Ом·мм²/м, медь 0,018 Ом·мм²/м. Так же стоить помнить, что при соединении токовыводов с кабелем лучше всего использовать облуженые кабельные наконечники, во избежание окисления.
12. Что такое балансир? Нужно ли его устанавливать?
Балансир это небольшая плата, которая подключается на литий и позволяет осуществлять контроль за напряжением отдельных «банок». Как было сказано выше у каждой «банки» LTO есть некоторые различия во внутреннем сопротивлении. От этого одна «банка» с бо’льшим сопротивлением берет заряд хуже нежели «банка» с меньшим сопротивлением. Как следствие в процессе эксплуатации может произойти разбег в напряжении «банок» (перезаряд или недозаряд). Собственно с помощью балансира можно этого не допустить. В основном применяются пассивные балансиры, работающие автоматически.
Вопрос нужен балансир или нет, на самом деле спорный. Все зависит от продавца лития. Я при покупке требовал от продавца комплектовать «банки» с примерно одинаковым внутренним сопротивлением, что позволило избежать проблемы разнозаряженности «банок». Вместе с тем, балансиры на каждую секцию были установлены.
В качестве эксперимента я проездил больше 3 месяцев на АБ без балансира, после чего замерил напряжение в каждой «банке». Значение напряжения варьировались с 2,33 В до 2,41 В (разница не критичная).
13. Как правильно установить балансир
Все нюансы были отображены в схеме, добавлю от себя, что достаточно провода 0,75 мм (я использовал ПВ-3).
14. Стоит ли дополнительно защищать банки LTO?
В качестве изоляции корпуса в LTO использована тонкая синяя пленка, которая легко повреждается. Так что да, для себя я выбрал дополнительную защиту в виде плотной термоусадочной трубки.
15. Сколько секций LTO можно соединить?
Сколько угодно все зависит от целей и бюджета. Главное, чтобы в секции число банок было 6.
Для моей системы с моноблоком в 4 кВт достаточно две секции по 30А ч.
16. Максимальный просад системы с установленным LTO?
Ниже 13,9 В не видел, при почти максимальных возможностях системы!
17. Какая цена?
Цена в сравнении с кислотными АБ выше, в сравнении с такими монстрами AGM, как Stinger и XS Power значительно ниже. Одна банка LTO стоит 2 000 руб. – 2 500 руб., балансир 2 000 руб., шины 300 руб. и того 1 секция в среднем 14 300 руб. и выше.
18. Нужно ли менять генератор на более продуктивный?
Нужно, но не обязательно. Мне хватает штатного обслуженного генератора 110А.
19. Можно ли соединять секции титаната различной емкости?
Да можно, но есть нюанс. Для примера
У нас есть 12 банок: 6 банок емкостью 40Ач, 6 банок 30 Ач. Необходимо соединить по 2 банки в пары, всего 6 пар. Каждая пара параллельное соединение (на выходе 2,4В и 75 Ач). Затем пары соединить последовательно (на выходе 14,4 В и 75 Ач).
20. Стоит ли покупать Титанат у частных лиц («С рук»). И на что обратить внимание?
Да можно, но при этом стоит оценить все риски заранее. Стоит понимать, что когда вы покупаете ЛТО у проверенного продавца, который занимается этим не первый год, вероятность купить качественный товар выше, чем вы купите ЛТО с рук. Для продавца важна в первую очередь не выручка, а общественное мнение. Попросту говоря, частник продал одну или две секции и слилися, а продавец живет этим. Стоит ли экономить пару тысяч решать вам.
Так на, что же все таки обратить внимание?
— В первую очередь на внешний вид банок. Изоляция не должна быть повреждена.
— Состояние шпилек. Не редко хозяева ЛТО перетягивают гайки, закручивая шины. Материал шпилек — алюминий и сломать их не составляет труда. Ремонтные пильки без углублений в центре и если приглядеться, можно увидеть место соединения.
— Состояние клапанов на секции. Они должны быть закрыты, взорванные клапана, говорят о смерти банки.
Наткнулся недавно на пост о продаже титаната: «Всем привет, продам литий титонат 55А, состояние 5/5, за подробностями в лс. Свердловская область.Могу отправить любой компанией к вам, за ваш счёт». Фото взорванной секции прилагаются, а так 5 из 5.=D
Что лучше, LiFePO4 или Li-ion
Литий-ионные аккумуляторы включают элементы питания с разными типами химии: с содержанием кобальта, марганца, никеля, алюминия, оксида титана, фосфата железа. Самые распространенные типы Li-ion аккумуляторов – литий-кобальтовые, литий-марганцевые и литий-никель-марганец-кобальтовые (NMC). Достойную конкуренцию им составляют литий-железо-фосфатные элементы питания (LiFePO4).
Они также относятся к литиевым аккумуляторам, но из-за значительных отличий от остальных Li-ion элементов питания часто рассматриваются как отдельная категория. Сегодня мы сравним аккумуляторы LiFePO4 и Li-ion, сопоставим их преимущества и недостатки, дадим рекомендации по использованию в зависимости от поставленных задач и условий использования.
Особенности литий-ионных аккумуляторов
Li-ion аккумуляторы содержат электроды, пористый сепаратор, электролит и контакты. Отрицательные пластины создаются из графита, электролит – обычно из смеси LiPF6 и карбоната. В роли катода применяются различные материалы: кобальтат лития (LiCoO2), литий-марганцевая или литий-кобальт-марганцевая шпинель (LiMn2O4, LiNiCoMnO2) и др. Технология производства Li-ion элементов постоянно совершенствуется, в результате чего повышается безопасность их эксплуатации, и улучшаются характеристики.
Li-ion элементы питания имеют высокую удельную энергоемкость, что позволяет вмещать в АКБ меньших размеров и массы больше энергии. Также они отличаются высокой токоотдачей и имеют следующие особенности:
Параметр оценки
Li-ion
Что лучше литий титанат или литий железо фосфат автозвук
Привет!
Как известно, хорошее питание AV (audio&video)-системы крайне необходимая вещь!
Поэтому, еще в первой своей инсталляции был заменен штатный аккумулятор 65 A*ч на АГМ 120 A*ч.
Подробно писал об этом в своем бортовике еще давным давно. К слову сказать, Стингер прослужил 6 лет без проблем при нещадной эксплуатации и был заменен на аналогичный перед соревновательным сезоном летом в 2017 году.
Сейчас в моей системе множество потребителей, в среднем, потребляется 25-35 А в час. И иногда вопрос своевременной зарядки стоит остро.
А учитывая, что в скором времени, система будет потреблять в 2 раза больше, то емкость аккумулятора уже не будет хватать более чем на час.
Соответсвенно, нужен аккумулятор еще большей емкости.
Думали над несколькими вариантами:
1. добавить такой же аккумулятор в подкапотное пространство, убрав воздушный фильтр — получил бы 240 А*ч от АГМ аккумуляторов.
2. Много место в ногах задних пассажиров — собрать кирпичиками из АГМ секций слева и справа — набрали бы порядочно.
3. Поставить к АГМ аккумулятору секции литий железо фосфата (LiFePO4) под ноги задним пассажирам.
4. Тоже, что и 3, но вместо LiFePO4 — литий титанат (LTO66160).
5. Поставить LiFePO4 или LTO66160 сразу в подкапотное пространство.
Взвесив за и против, вместе с Саней Martyanov ым, также проконсультировавшись с Дмитрием Бекреневым boombox61 и Виталием, аka dedvitos решили ставить железофосфат сразу в подкапотное пространство. Место там у аутлендера полным полно! Особенно, если убрать штатный воздушный фильтр и заменить его холодным впуском, либо применить более компактные воздушные фильтра — например от Honda CRX.
Почему решили остановиться именно на железофосфате, а не на титанате, ведь сейчас идет поголовное увлечение SPL-щиков титанатом, тем более он дешев и обладает колоссальной токоотдачей и легко переносит морозы:
1. LiFePO4 работает в морозы, просто падает токоотдача, в сети полно графиков, кто хочет, тот найдет. Я буду ставить секцию 500 А*ч — если, он не разряжен, то его за глаза хватит, чтобы завезти машину ВСЕГДА.
2. Мне нужна емкость, а не скорость отдачи — поэтому LiFePO4.
3. LiFePO4 занимает существенно меньше места, чем LTO66160, так как титанат собирается из цилиндрических банок. А теперь представтье сколько места будет занимать LTO66160 550 А*ч — это 60 банок размерами 66*320 мм.
4. LTO66160 — температура эксплуатации не более 60гр. по Цельсию, LiFePO4 — 80 гр. — это критично для установки в подкапотное пространство, особенно летом в жару и в пробках.
5. LTO66160 — титанат горит, и очень хорошо, хотя железо фосфат тоже. Но LiFePO4 имеет прочные секции, а банки LTO66160 имеют синюю термоусадку снаружи, и не дай Бог, банки перетрутся друг об друга — будет пожар, который не потушишь. Соотвествено, титанат очень требователен к сборке.
Рекомендую к просмотру краш тест банки титаната.
Мог бы и более развернуто написать про плюсы и минусы использования LiFePO4 и LTO66160.
Но ограничимся, как раз повод для обсуждения в комментариях)))
Кстати, кому интересно — по ссылке FAQ по использованию литий-титаната LTO66160.
А я же прошу посмотреть парочку видео, как искал пространство для аккумуляторной батареи — это забавно!) Рекомендую слушать в наушниках, так слышно лучше.
Литий-титанатные аккумуляторы – это разновидность привычных всем литий-ионных батарей. Выделяются в отдельную группу они потому, что их положительный электрод, анод, выполняется из специального сплава, титаната лития (Li4Ti5O12). Материал имеет некристаллическую структуру, увеличивающую поверхность соприкосновения с электролитом: один грамм имеет площадь 1002 метров, что выгодно отличает его от углерода с 32 метрами. Новое вещество обеспечивает высокую плотность тока. Это важнейший параметр для источника питания.
Плюсы и минусы
Причиной поиска новых путей развития технологии стало несовершенство имевшихся свинцовых, литий-железо-фосфатных и литий-ионных батарей. Они недостаточно безопасны, недолговечны и способны полноценно работать в узком диапазоне температур.
Проводились исследования соединений лития и титана. Как наиболее перспективное вещество был выделен титанат.
Характеристики соответствующих аккумуляторов очень высоки. Так, количество циклов зарядки-разрядки превышает 10 000. Емкость со временем снижается мало: на 20 % – при токе разряда 0,5С* после 10 миллионов циклов, а при токе разряда 3С после 10 тысяч.
Прямым следствием электрохимической и механической устойчивости структуры материала являются и показатели пожаро- и взрывобезопасности, которые несравнимо ниже, чем у литий-ионных элементов.
Российские и зарубежные в производстве придерживаются схожих стандартов:
Эффективность заряда-разряда колеблется пропорционально силе тока и составляет от 85 до 95 процентов. После 10 тысяч циклов она падает до 90, а после 20 – до 80 процентов.
Из недостатков стоит отметить невысокое напряжение и относительную малораспространенность технологии и незначительные объемы производства.
Первую проблему решают добором активных элементов, и она не является серьезной в свете меньшего их веса по сравнению с литий-ионными. А вот второе обстоятельство более весомо: литий-титанатные все еще имеют большую стоимость, чем другие виды аккумуляторов.
Немного истории
Технология начала проходить обкатку еще в 2011 году. Lp-TO аккумуляторы были установлены в городских автобусах Японии, на самых протяженных маршрутах.
К 2016 году экспериментальный транспорт суммарно преодолел более 700 000 километров. За это время у самых первых машин количество циклов перезарядки достигло 2 000 при падении емкости в 3 %.
Напряжение этих батарей равно 560 В, а емкость – 100 ампер-часов. Зарядка происходит посредством 400-киловаттного выпрямителя на специально оборудованных станциях.
Сейчас титанатный аккумулятор встречается уже и в электромобилях и электробайках. Хороший пример таких транспортных средств – Mitsubishi i-MiEV или Honda Fit EV.
Устройство и механизм работы
Именно анод определяет длительность жизненного цикла и уровень безопасности аккумулятора.
На подложку методом осаждения наносятся атомарные слои оксида титана толщиной менее 15 нанометров. После обжига они приобретают объемную полую структуру, состоящую из большого количества полых лент и больших полостей высотой до 30 и шириной до 150 нанометров.
Трехмерная поверхность имеет огромную площадь и рассчитана так, чтобы внутрь легко проникал электролит, взаимодействуя со всей поверхностью материала и осуществляя транспорт положительно заряженных ионов лития.
Формула протекающей электрохимической реакции такова:
Li4Ti5O12 + 3Li+ + 3e- Li7Ti5O12
Катод обычно изготавливается из соединения кобальта LiCoO2. Взаимодействуя с кислородом, катода ионы лития отдают заряд и становятся нейтральными, вновь осаждаясь на аноде.
Внешне титановый аккумулятор выглядит стандартно. Для упаковки всех элементов используется пластик, композиты или цветной металл. Корпуса имеют форму призмы с прямыми углами или цилиндра. Для улучшения контакта и упрощения соединения многие модели снабжены клеммами.
Применение
Используют титанатные АКБ не только в электротранспорте в качестве основного источника энергии, но и в бензиновых автомобилях как замену обычному аккумулятору для стартера, освещения и автозвука.
Имеется значительный спрос на технологию и в сферах кораблестроения, авиастроения.
Применяют такие элементы питания также и в устройствах, для которых важна как бесперебойность работы, так и высокая степень автономности или мобильности: в светофорах, в телекоммуникационном и связном оборудовании, в резервных цепях питания.
Еще одна область применения – организация освещения в сочетании с солнечными батареями. Таким способом возможно обеспечить электроэнергией как улицу, так и внутренние помещения.
Постепенно литий-титанатные накопители проникают и в бытовые устройства: нередки теперь оснащенные ими телефоны, планшеты, ноутбуки, фотоаппараты, видеокамеры, мобильное медицинское оборудование и даже велосипеды.
Особенности эксплуатации и утилизация
В эксплуатацию литий-титанатные аккумуляторы поступают уже готовыми для подключения к нагрузке, так как первоначальный заряд обусловлен электрохимической реакцией между электродами плюса и минуса.
Зарядка производится специальным устройством постоянного тока.
Согласно приказу № 511 Министерства природных ресурсов от 15.06.2001 различают 5 классов опасности отходов. Отработанные аккумуляторы относятся ко второму классу, что предполагает специальную процедуру утилизации.
Фирмы-производители и предлагаемый ассортимент
Новизной технологии объясняется ее нераспространенность.
На рынке литий-титанатные аккумуляторы представлены небольшим количеством производителей, среди которых явно лидирует японский концерн Toshiba. Маркетинговое название соответствующей продукции – Super Charge Ion Battery, или сокращенно SCiB.
Литий-титанат с добавкой позволяет заряжать аккумуляторы за 5 минут до 90 %. Их удельная емкость вдвое выше титанатных, что позволяет уменьшить размер элементов питания и приблизить их по удельной энергии к литий-полимерным.
Для своих наручных кинетических часов производит батареи малого размера и Seiko, заменив ими конденсаторы.
Не отстают и швейцарцы. Компания Leclanché, которая с 1939 года выпускает аккумуляторы, освоила передовой техпроцесс после приобретения в 2006 году немецкой фирмы Bullith AG. Их продукт называется TiBox и представляет собой многоразовые источники питания с литий- титанатным анодом, мощностью 3,2 кВт и ресурсом работы до 20 тысяч циклов.
Американская компания из Невады Altairnano выпускает линейку элементов питания Nanosafe для электромобилей. Их титанат и производимые АКБ по официальным заявлениям готовы установить под капот многие производители автомобилей. Это английская фирма Lightning Car Company, известная своими спорткарами.
Также американская студия Phoenix Motorcars, которая переделывает корейские авто от SsangYong в электромобили. И, наконец, калифорнийская фирма Proterra, в своем микроавтобусе EcoRide BE35.
Выпускают литий-титановые аккумуляторы и в Китае. Компания YABO Power Technology выпустила первый экземпляр еще в 2012 году. Изделия преимущественно применяются в автотранспорте.
Типичный представитель – батарея YB-LITE2344, рассчитанная на штатное напряжение 2,4 V и емкость 15 ампер-часов.
Где купить
Самая популярная емкость для титанат-батарей, используемых в различных АКБ, – 40 АЧ. Чаще всего такие модели имеют стандартное количество циклов перезаряда (20 700) и годятся для последовательного соединения в банки больших размеров.
Купить источники питания можно в интернет-магазинах. По отзывам, качественный товар приобрести проще на eBay (иБэй), а на Aliexpress (Алиэкспресс) весь ассортимент дешевле.
Перед покупкой стоит убедиться в добросовестности продавца. Иногда под видом новых продают списанные аккумуляторы.
Быстро найти необходимый ассортимент на сайтах торговых площадок можно по поисковому запросу LTO или Lithium-Titanate.
Помимо стандартных и распространенных типоразмеров присутствуют и более нишевые: в виде плоских гибких или защищенных жесткими листами ячеек, в форме стандартных батареек. Есть также уже готовые собранные аккумуляторы и блоки питания в корпусах.
Там же нетрудно найти и специальные зарядные устройства, рассчитанные на постоянный ток, нужные напряжение и силу тока.
Сколько стоит конкретный титанат-литиевый аккумулятор, зависит еще и от цены доставки: продавцы пользуются услугами различных почтовых организаций и курьерских служб. Поэтому стоимость в итоге может серьезно отличаться.
Заключение
Потенциальный рынок литий-титанатных аккумуляторов велик. Поэтому перспективы развития данной технологии более чем обнадеживающие. Продукция уже выпускается серийно, становится доступнее, так как цена на нее снижается. Растет и ассортимент.
Литий-титанатные «банки» – это относительно новый подвид Li-ion элементов питания, анод которых производится из титаната лития (Li4Ti5O12). Этот материал имеет нанокристаллическую структуру и увеличивает эффективную площадь поверхности анода до 100 м 2 /г, в то время как у углеродных анодов этот параметр равен 3 м 2 /г. Применение литий-титаната увеличивает удельную емкость аккумуляторов на 60%,обеспечивает стабильность поверхности, отличную проводимость и высокую плотность тока.
Литий-титанатные аккумуляторы быстро заряжаются, имеют огромный циклический ресурс (порядка 20 000 циклов), малое внутреннее сопротивление и широкий диапазон рабочих температур. У них малый саморазряд, высокий уровень взрыво- и пожаробезопасности. Все эти качества обеспечивают LTO аккумуляторам растущую популярность и интерес покупателей. Сфера их применения постепенно расширяется, и все чаще LTO батареи используются в бытовой технике, персональном электротранспорте и различных энергосистемах.
Характеристики LTO аккумуляторов
Планируя использовать литий-титанат вместо штатной АКБ, примите во внимание отличия в характеристиках:
2,3 В (бывает от 2 до 2,4 В)
Максимальное напряжение (в заряженном состоянии)
4,2 В, у высоковольтных моделей – до 4,4 В
Минимальное напряжение (в разряженном состоянии)
2,5 В, у высоковольтных моделей – до 3 В
Более 20 000 циклов
Длительность быстрой подзарядки
Допустимые токи разряда относительно емкости С
до 10С, кратковременно – до 30С
Оптимальный – до 1С;
импульсный – до 50С.
Диапазон рабочих температур
От −20 до +50 C при зарядке,
от −40 до +60 C при разрядке.
От −20 до +60 C (оптимально +23 C). Зарядка – только при плюсовых температурах.
От −30 до +55 C. Зарядка – только при плюсовых температурах.
Пожаро- и взрывобезопасность
Сравнение характеристик
По допустимым токовым нагрузкам и стабильности работы в проблематичных метеоусловиях LTO аккумуляторы сопоставимы с литий-железо-фосфатными элементами и выигрывают у остальных Li-ion моделей. По циклическому ресурсу, скорости зарядки и температурному диапазону литий-титанат значительно превосходит конкурентов. Он даже допускает возможность подзарядки на морозе, что недопустимо для остальных Li-ion элементов.
С другой стороны, литий-титанат уступает остальным литий-ионным аккумуляторам по рабочему напряжению и удельной энергоемкости. Поэтому для сборки аккумуляторной батареи с идентичными значениями вольтажа и емкости LTO элементов потребуется больше (по объему и весу), чем LiFePO4 или Li-ion других типов.
Использование LTO аккумуляторов вместо штатных
Литий-титанатные АКБ можно использовать вместо штатных батарей в различных сферах, особенно – когда к источникам питания выдвигаются строгие требования по надежности и безопасности. В частности, LTO батареи используются для хранения, накопления и отдачи энергии, обеспечивая питание:
При сборке батареи используется схема, соответствующая необходимым значениям напряжения и емкости. Для суммирования напряжения аккумуляторы соединяются последовательно. Так, для получения вольтажа 24 В нужно последовательно соединить 10 LTO аккумуляторов номинальным напряжением 2,4 В (схема сборки 10S), для получения АКБ на 36 В – 15 таких элементов (схема 15S), для получения батареи на 48 В – 20 аккумуляторов (схема 20S).
Резюме
Литий-титанатные АКБ способны стать выгодной заменой штатных батарей во многих сферах. Но из-за низкого рабочего напряжения и меньшей удельной энергии (по сравнению с обычными Li-ion элементами) они не подходят для вариантов использования, в которых на первый план выходит снижение объема и массы элементов питания. В частности, литий-титанат проблематично использовать для оснащения электротехники, ноутбуков и смартфонов.
В предыдущей статье нашего блога рассмотрены возможные причины, почему не заряжается литий-ионный аккумулятор.
На рынке сегодня присутствует не малое количество разновидностей литиевых накопителей электроэнергии, и особое место среди них занимает литий-железо-фосфатное (LiFePO4 или LFP) исполнение. Чем оно выгодно отличается от «соплеменников» и каковы его особенности? Вот именно об этом мы будем говорить в данной теме.
История появления
Итак, LiFePO4 был открыт давненько, в 1996-ом году, профессором Техасского университета Джоном Гуденафом. Материал играл роль катода для обычного Li-ion накопителя. Отличался LFP тем, что по сравнению с традиционными литий-кобальтовыми источниками энергии, имел значительное преимущество в цене, был менее токсичным и более термоустойчивым. Однако у LiFePO4 имел место и один значимый недостаток — меньшая ёмкость.
До 2003-го года разработка практически не продвигалась вперёд, пока она не попала в руки специалистов представляющих фирму A123 Systems. Кроме того, серьёзный толчок делу дали такие инвесторы как Motorola, Qualcomm и Sequoia Capital, благодаря которым технология была доведена до ума.
Первая промышленная партия изделий была выпущена в 2006-ом году и с тех пор, LFP позиционируются как лучшие из силовых электронакопителей.
LiFePO4 обходят конкурентов по таким параметрам:
1. Улучшенные характеристики.
2. Более высокий показатель КПД.
3. Повышенный уровень безопасности.
LiFePO4 предлагают пользователю более продолжительный срок службы, по сравнению со своими Li-ion собратьями. Применение фосфатов даёт возможность избежать расхода кобальта и связанных с этим экологических проблем.
Что мы имеем по техническим характеристикам LiFePO4?
Время зарядки LFP-батареи — 4 часа. Масса аккумулятора с характерстиками 36 V 12 Ah – 5,5 килограмма, разрядной ток — до 35 A, мощность — до 1260 Ватт, пиковая — 2160 Ватт.
Что нам предлагает ближайший конкурент LFP, традиционный Li-ion?
Время зарядки Li-ion батареи — 8 часов. Масса аккумулятора с характеристиками 36 V 12 Ah – 3 килограмма, разрядный ток — до 12 A, выдаваемая мощность — до 432 Ватт, пиковая — 864 Ватта.
Преимущества LiFePO4 электронакопителей
Скорее всего, вас не вдохновит показатель напряжения LiFePO4, но не стоит из-за этого сбрасывать данную разновидность литиевых источников питания со счетов. У них есть ряд преимуществ, которые могут заинтересовать очень многих юзеров.
1. В таких АКБ разработчики используют структуру оливина, высокотемпературного материала, который способен выдерживать температуру до 1900 градусов.
2. Продолжительный срок эксплуатации. Такая аппаратура может выдержать от двух до семи тысяч циклов. При этом, ёмкость снизится всего на 20%. А вот обычный литий-ион столько не потянет: его потенциал 500-1000 циклов разряда/заряда.
3. Срок хранения. По этому параметру LFP изделия также долгоиграющими являются. Хранить их можно 12-15 лет, а вот Li-ion — всего 3-5 лет, потом начинается деградация.
5. Устойчивость к переразряду. Если напряжение преодолеет допустимое значение, LFP грозят лишь несущественные повреждения, при которых девайс сохранит свою работоспособность. А вот Li-ion, при критическом уровне напряжения, становится весьма опасным предметом — происходит разгерметизация из-за которой в атмосферу выбрасывается литий. В этом случае вполне можно ожидать взрыва!
6. LFP не загораются при повреждении компонентов. Они в такой ситуации будут только нагреваться и испускать дым. Li-ion же при повреждении взрываются и могут напугать юзера появлением яркого пламени.
7. 3,2-вольтовое постоянное напряжение на выходе, даёт возможность соединить последовательно две пары аккумуляторов, для получения 12,8-вольтового номинального напряжения на выходе. Это приближено к напряжению свинцово-кислотных АКБ (SLA) с 6-ю ячейками. Данное обстоятельство, параллельно с достойной безопасностью источников питания LFP, делает их отличной возможной заменой SLA во многих отраслях. К примеру, автомобильная промышленность и солнечная энергетика. Тут возможно применение 3,2-вольтовых накопителей стандартного типоразмера 14500/10440, вместо пары гальванических элементов либо АКБ типоразмеров АА/ААА 1,5 V. Для это применяется один LFP электронакопитель, а на место второго компонента устанавливается вставка-проводник с идентичными размерами.
8. Если сравнивать LFP-батареи с другими литиевыми исполнениями, то они обладают довольно стабильным разрядным напряжением. На выходе напряжение остаётся близко к 3,2 V во время разряда, пока энергия аккумуляторной батареи не иссякнет на сто процентов. Это может существенно упростить корректировку напряжения в цепях или даже исключить надобность в ней.
9. LFP источники питания, обладают пониженной скоростью разряда, по сравнению с Li-ion и SLA электронакопителями.
10. LiFePO4 батареи можно встретить в формате 18650, что очень удобно. Это даёт возможность пользователям собрать источник питания практически любой формы, разместив компоненты наиболее удобным способом. Однако при одном и том же напряжении, LFP изделия будут несколько тяжелее и больше по размерам, поскольку в распоряжении ячеек разное номинальное напряжение.
11. Упрощённая система управления батареей и не сложное зарядное устройство. Большой допуск перезаряда и характеристика самобалансировки LFP-батареи, дают возможность упростить защиту аккумулятора и сбалансировать печатные платы, снизив их себестоимость. Одноступенчатый процесс зарядки позволяет применять более простой, обыкновенный источник питания для зарядки LiFePO4, чего не скажешь о литий-ионном электронакопителе, для которого требуется сложное и дорогое зарядное оборудование.
Сравнение LiFePO4 и Li-ion — что лучше?
Выше в теме я привёл основные характеристики этих разновидностей батарей, но, для большего понимания ситуации, стоит углубиться в подробности.
Сразу скажу: тут стоит отдать должное Li-ion источникам питания, так как именно они чаще всего становятся для потребителя оптимальным выбором.
Стоят они меньше, меньше у них и масса, а при щадящем режиме работы, Li-ion могут предложить юзеру около тысячи циклов. Однако если вам предстоит эксплуатировать индивидуальный электротранспорт в жёстких условиях, к примеру, ездить на электрифицированном велосипеде при минусовых температурах, то стоит отдать приоритет LiFePO4. Такие источники питания совмещают в себе все плюсы Li-ion, но у них отсутствуют их негативные стороны.
Пиковые токи нагрузки и заряда не наносят вреда ресурсу LFP аккумулятора. Кроме того, электронакопители такого типа имеют меньшую склонность к естественной деградации, предлагают минимальный саморазряд и весьма широкий диапазон рабочих температур. Обладателя LFP аккумулятора, порадует и то, что изделие может выдержать более 2000 циклов при утрате ёмкости на 20%. Так что, по выносливости и долговечности LFP-батареи переигрывают остальные литиевые исполнения. В то же время нужно учитывать, что LiFePO4 весят больше чем Li-ion и вдобавок они габаритнее.
В общем, суть такова: перед выбором литиевого энергонакопителя, чётко определитесь со своими приоритетами и условиями дальнейшего использования АКБ.
Применение LFP аккумуляторов
Системы автономного электроснабжения, в состав которых входят ветрогенераторы и солнечные батареи — вот где LFP активно используется как буферный накопитель. LiFePO4 оборудуется складская техника, поломоечные машины, гольфкары, водный транспорт, электрические велосипеды, электрические скутера, электрические автобусы и электромобили. LFP-накопители также обслуживают телефоны, планшеты и шуруповёрты.
Как правильно эксплуатировать LFP батареи
Не превышайте дозволенные параметры
Любые Li-ion электронакопители, в том числе и новые LFP изделия, довольно быстро вырабатывают свой ресурс, если разряжать их по максимуму либо длительное время удерживать на зарядке. В том случае, если источник энергии часто разряжается ниже допустимого предела, он начнёт утрачивать в ёмкости и по прошествии некоторого времени, электронакопитель будет разряжаться в ускоренном темпе. Также, от перезарядки может случиться такое недоразумение как вздутие девайса, по причине того, что внутри ячеек скапливается газ, а итогом является неприятный всем выход из строя.
Для продления срока эксплуатации LiFePO4, заряжать его рекомендуются до 3,65 V (пик 3,7 V), а разряжать не ниже показателя 2,5 V (пик 2 V).
Применяйте систему управления батареей (BMS)
Аккумуляторные батареи мобильных устройств и электрокаров, как правило, заряжаются на 100%, а затем сразу идут в работу. Однако если не отключить зарядную аппаратуру после полной «заправки», электронакопитель разбухнет и откажется продолжать дальнейшую работу. Думаете нужно в обязательном порядке тщательно следить за напряжением АКБ, чтобы она не разряжалась до минимального значения и не достигала излишнего заряда? Реально, делать это необязательно — разработчики давно решили данную проблему! Они начали ставить на каждую аккумуляторную батарею специальную защитную плату, так называемую BMS. Деталь контролирует показатели источника электроэнергии, от которого заряжается LiFePO4. Она полностью отвечает за зарядку/разрядку АКБ.
Если LFP-батарея начнёт подвергаться зарядке сверх нормы, BMS организует равномерное распределение нагрузки по ячейкам. Если электронакопитель разрядится в значительной степени, контрольная плата прекратит подачу электроэнергии потребителям.
Если вы приобретаете не целую батарею, а только ячейки и игнорируете внедрение BMS, то распределение напряжения при зарядке АКБ будет неравномерным. К примеру, в вашем распоряжении аккумуляторная батарея состоящая из двух пар ячеек LFP. По ходу дела три ячейки достигают примерно одинакового уровня заряда, где-то на 3,5 V. А вот четвёртая ячейка по заряду выходит значительно выше — 4,25 V. Чем чревата такая разность? Тем, что четвёртая ячейка начнёт заряжаться сверх допустимого и даст сбой. При этом, общее напряжение при зарядке остаётся в пределах дозволенных значений.
Может случиться так, что установить BMS по каким либо причинам будет невозможно и возникает вопрос — а что делать в этом случае? Поставьте хотя бы балансировочные платы, которые помогут удерживать напряжение сбалансированным.
Но в то же время, «балансиры» ничем не помогут накопителю энергии, если все ячейки разрядятся до критического уровня либо начнут перезаряжаться. Кроме того, если расхождение в заряде ячеек будет значительным, балансировочная деталь не будет выравнивать напряжение.
Хотите по максимуму защитить LiFePO4 электронакопитель? Лучший способ сделать это, установить плату BMS, которая будет прекрасно справляться со своими прямыми обязанностями избавляя вас при этом от лишней головной боли.
Режим работы
Любую аккумуляторную батарею можно эксплуатировать в двух режимах: буферном и циклическом. Начнём с циклического режима. Вы пользуетесь мобильным устройством целый день, затем устанавливаете его на зарядку, а когда аккумулятор заряжен на сто процентов — продолжаете использовать девайс. А вот что касается буферного режима, то это когда электронакопитель постоянно подзаряжается. Буферный режим встречается в бесперебойных источниках питания. При нём напряжение аккумуляторной батареи редко снижается до критических показателей, по этой причине он проработает дольше, чем если будет функционировать в циклическом режиме.
Если хотите дополнительно продлить срок эксплуатации электронакопителя, понизьте напряжение заряда. Как правило, для LFP-батарей, это 3,40-3,45 V. Однако самый лучший вариант — свериться с теми значениями, которые рекомендует изготовитель АКБ.
Балансировка ячеек
Если вы предпочли собирать LFP-накопитель собственными силами, то перед сборкой нужно в обязательном порядке отбалансировать ячейки — 3,2-вольтовые. Ячейки не всегда являются заряженными в одинаковой степени, поэтому перед применением устройства, его рекомендуется предварительно отбалансировать. Для этого потребуется параллельно соединить каждую ячейку: «+» с «+» и «-» с «-» каждой ячейки. После состыковки зарядите ячейки до 3,65 V.
Если одна либо несколько ячеек продемонстрируют разность сопротивлений, в процессе балансировки будет происходить выравнивание напряжений между компонентами.
Для сбережения ресурса LiFePo4 важно:
1. Применять специальные ЗУ, которые предназначены для аккумуляторов LFP с обозначением конечного напряжения. Зарядки для литиевых АКБ других типов, для LiFePo4 изделий не годятся, так как у LFP более низкое рабочее напряжение.
2. Не следует оставлять источник энергии разряженным. Если последующий саморазряд повлечёт за собой критическое снижение напряжения хотя бы на одном элементе АКБ, это отрицательно скажется на ёмкости всего электронакопителя. Поэтому, если LiFePo4 почти разрядилась, её нужно как можно быстрее установить на зарядку и довести до номинального напряжения, а это 3,2 V на компонент.
3. Не допускайте разряда аккумулятора до его отключения посредством BMS и заряжайте гаджет после каждого применения. LiFePo4 не страдают от эффекта памяти, а полные циклы разряда будут только негативным образом сказываться на ресурсе девайса.
4. Заряжайте агрегат при температуре корпуса приближённой к комнатной. Если накопитель энергии был перед зарядкой на холоде, нужно сначала нагреть его до комнатной температуры. Для этого потребуется 4-5 часов пребывания в тёплом помещении.
5. Для зарядки LiFePo4 лучшим вариантом будут «умные» ЗУ либо контроллеры. Они обеспечивают подзарядку систем напряжением 12-14,6 V, а по прошествии 10-20 минут снижают напряжение до 13,6–13,8 V, то есть, до 3,4–3,45 V на каждый отдельный элемент.
Правила хранения и утилизации LiFePo4
Когда ваша аккумуляторная батарея полностью отработает своё, следует обратиться в специальную организацию, занимающуюся утилизацией подобного оборудования. Если вы поступите подобным образом, то можете даже заработать на этом. Но в то же время, если вы просто выбросите источник энергии LFP на свалку, ничего страшного не будет.
Чтобы вам легче было усвоить всю информацию изложенную в статье, я приведу далее несколько пунктов, которые нужно обязательно запомнить:
1. Следите за тем, чтобы напряжение LiFePo4 не опускалось ниже 2 V и не заходило за отметку 3,7 V. Что касается идеального диапазона, то это 2,5-3,65 V.
2. Если будете собирать батарею LFP самостоятельно, не забудьте про BMS.
3. Если используете АКБ в буферном режиме, понизьте её напряжение. Рекомендуемые параметры — 3,4-3,45 V.
4. Заряжать LFP нужно специальной зарядкой.
5. Перед самостоятельной сборкой электронакопителя, отбалансируйте ячейки, чтобы выровнять напряжение.
Основные преимущества LFP:
1. Продолжительный срок эксплуатации — 2000-7000 циклов заряда/разряда. При этом потеря ёмкости составляет 20%.
2. Срок хранения — 12-15 лет.
4. Не воспламеняется при повреждении компонентов.
5. Устойчивость к переразряду.
Естественно, не обошлось и без недостатков: это бОльшая по сравнению с Li-ion масса и себестоимость. Хотя уже можно обзавестись на Али.
Литий-ионные аккумуляторы включают элементы питания с разными типами химии: с содержанием кобальта, марганца, никеля, алюминия, оксида титана, фосфата железа. Самые распространенные типы Li-ion аккумуляторов – литий-кобальтовые, литий-марганцевые и литий-никель-марганец-кобальтовые (NMC). Достойную конкуренцию им составляют литий-железо-фосфатные элементы питания (LiFePO4).
Они также относятся к литиевым аккумуляторам, но из-за значительных отличий от остальных Li-ion элементов питания часто рассматриваются как отдельная категория. Сегодня мы сравним аккумуляторы LiFePO4 и Li-ion, сопоставим их преимущества и недостатки, дадим рекомендации по использованию в зависимости от поставленных задач и условий использования.
Особенности литий-ионных аккумуляторов
Li-ion аккумуляторы содержат электроды, пористый сепаратор, электролит и контакты. Отрицательные пластины создаются из графита, электролит – обычно из смеси LiPF6 и карбоната. В роли катода применяются различные материалы: кобальтат лития (LiCoO2), литий-марганцевая или литий-кобальт-марганцевая шпинель (LiMn2O4, LiNiCoMnO2) и др. Технология производства Li-ion элементов постоянно совершенствуется, в результате чего повышается безопасность их эксплуатации, и улучшаются характеристики.
Li-ion элементы питания имеют высокую удельную энергоемкость, что позволяет вмещать в АКБ меньших размеров и массы больше энергии. Также они отличаются высокой токоотдачей и имеют следующие особенности: