любое изображение можно закодировать с помощью чего
Кодирование изображений
ХОД УРОКА
Оргмомент.
Сегодня на уроке мы с вами поговорим обизобразительном искусстве. Этот вид искусства воспринимается зрительно (живопись, скульптура, графика, фотоискусство). С древности существуют два основных взгляда на искусство: это образы реального мира, созерцая которые зритель получает наслаждение (Аристид); искусство вдохновляется высшими силами и выражает чувства и ощущения человека (Платон).А также научимся вычислять объем графической информации.
Разминка.
Решение задачи на повторение. Алгебра логики
Для какого из приведенных фамилий ложно высказывание: НЕ ((Букв в слове 5) И (Последняя буква Н))?
1) Серов; 2) Репин; 3) Левитан; 4) Шишкин.
Решение. А = Букв в слове 5, В = Последняя буква Н.
Дополнительный материал из области искусства
Ильям Ефиммович Ремпин (24 июля [5 августа] 1844 — 29 сентября 1930) — русский художник-живописец, мастер портрета, исторических и бытовых сцен. Академик Императорской Академии Художеств.
Мемуарист, автор ряда очерков, составивших книгу воспоминаний “Далёкое близкое”. Преподаватель, был профессором — руководителем мастерской (1894—1907) и ректором (1898—1899) Академии художеств, одновременно преподавал в школе-мастерской Тенишевой; среди его учеников — Б. М. Кустодиев, И. Э. Грабарь, И. С. Куликов, Ф. А. Малявин, А. П. Остроумова-Лебедева, давал также частные уроки В. А. Серову.
Одной из известных картин является “Запорожцы пишут письмо турецкому султану” (1880—1891). Прочитать рассказ о данной картине. По тексту определить героев данной картины. Обратить внимание учащихся на упорство художника в работе над произведением, и его ухищрения в достижении цели. Как часто, мы бросаем решать те или иные задачи, которые нам не удались в первые минуты работы.
“В 1878 году, от гостя в Абрамцеве, Репин услышал рассказ украинского историка о том, как турецкий султан писал к запорожским казакам и требовал от них покорности. Ответ запорожцев был смел, дерзок, полон издёвок над султаном. Репин пришёл в восторг от этого послания и сразу сделал карандашный эскиз. После этого он постоянно возвращался к этой теме, работая над картиной более десяти лет. Она была закончена только в 1891 году. Картина имеет 3 списка (не считая этюда). Первый Репин подарил другу, историку Дмитрию Яворницкому, а тот — Павлу Третьякову. Большая часть моделей для него взята из Екатеринославской губернии.Писарь — Яворницкий, Иван Сирко — киевский генерал-губернатор Михаил Драгомиров, раненый в голову казак — художник Николай Кузнецов; войсковой судья в чёрной шапке — Василий Тарновский; молодой казачок в круглой шапке — его сын, обладатель обширной лысины — Георгий Алексеев, предводитель дворянства Екатеринославской губернии, обер-гофмейстер двора его Величества, почётный гражданин Екатеринослава и страстный нумизмат. Поначалу он отказался позировать с затылка. Пришлось пойти на хитрость. Яворницкий пригласил его посмотреть свою коллекцию, а позади тайком усадил художника, и пока предводитель любовался монетами, Репин быстро набросал портрет. Георгий Петрович узнал себя уже в Третьяковке и обиделся.”
Решение задачи на повторение. Кодирование текстовой информации.
Учащимся раздаются карточки с текстом.
Определитеинформационный объём рассказа в кодировке КОИ-8, в которойкаждый символ кодируется 8 битами.
Решение. Посчитаем сколько строк в тексте и сколько символов в каждом ряду (в презентации). Строк – 22, символов в строке – 64.
Объяснение нового материала. Кодирование изображений.
Как измерить объем графической информации?
Наложим на изображение мелкую сетку – растр. В результате картинка разбилась на ячейки. Каждая ячейка окрашена в один цвет и называется точкой (или пикселом). Цвет можно закодировать, то есть поставить ему в соответствие уникальное целое число. И тогда изображение превращается в набор целых чисел. Закодированное таким образом изображение, называется растровым.
N – количество разных цветов, используемых при кодировании изображения;
i – число битов, необходимых для кодирования цвета одной точки изображения (глубина цвета).
Примеры типов изображений и их кодирования
Все многообразие красок на экране получается путем смешивания трех базовых цветов: красного, синего, зеленого. Каждый пиксель на экране состоит из трех близко расположенных элементов, светящихся этими цветами.
Любое изображение можно закодировать с помощью чего
Под графической информацией подразумевают всю совокупность информации, которая нанесена на самые различные носители — бумагу, пленку, кальку, картон, холст, оргалит, стекло, стену и т. д. В определенной степени графической информацией можно считать и объективную реальность, на которую направлен объектив фотоаппарата или цифровой камеры.
Под видами компьютерной графики подразумевается способ хранения изображения на плоскости монитора.
Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Применение во время деловых совещаний демонстрационных слайдов, подготовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватывает такие несхожие области как видеоигры и полнометражные художественные фильмы.
История компьютерной графики
Возникла идея поручить графическую обработку самой машине. Первоначально программисты научились получать рисунки в режиме символьной печати. На бумажных листах с помощью символов (звездочек, точек, крестиков, букв) получались рисунки, напоминающие мозаику. Так печатались графики функций, изображения течений жидкостей и газов, электрических и магнитных полей. С помощью символьной печати программисты умудрялись получать даже художественные изображения (Рис. 1). В редком компьютерном центре стены не украшались распечатками с портретами Эйнштейна, репродукциями Джоконды и другой машинной живописью.
Рис. 1 Символьная печать.
Затем появились специальные устройства для графического вывода на бумагу — графопостроители (другое название — плоттеры). С помощью такого устройства на лист бумаги чернильным пером наносятся графические изображения: графики, диаграммы, технические чертежи и прочее. Для управления работо графопостроителей стали создавать специальное программное обеспечение.
Настоящая революция в компьютерной графике произошла с появлением графических дисплеев. На экране графического дисплея стало возможным получать рисунки, чертежи в таком же виде, как на бумаге с помощью карандашей, красок, чертежных инструментов Рисунок из памяти компьютера может быть выведен не только на экран, но и на бумагу с помощью принтера. Существуют принтеры цветной печати, дающие качество рисунков на уровне фотографии.
Представление графической информации в компьютере
Создавать и хранить графические объекты в компьютере можно двумя способами: как растровое или как векторное изображение. Для каждого типа изображения используется свой способ кодирования.
Растровое изображение представляет собой совокупность точек, используемых для его отображения на экране монитора.
Объём растрового изображения определяется как произведение количества точек и информационного объёма одной точки, который зависит от количества возможных цветов. Для черно-белого изображения информационный объём одной точки равен 1 биту, так как точка может быть либо чёрной, либо белой, что можно закодировать одной из двух цифр — 0 или 1.
Информационный объём растрового изображения (V) определяется как произведение числа входящих в изображение точек (N) на информационный объём одной точки (q), который зависит от количества возможных цветов, т. е. V=N ⋅ q.
При чёрно-белом изображении q = 1 бит (например, 1 — точка подсвечивается и 0 — точка не подсвечивается). Поэтому для хранения чёрно-белого (без оттенков) изображения размером 100×100 точек требуется 10000 бит.
Если между чёрным и белым цветами имеется ещё шесть оттенков серого (всего 8), то информационный объём точки равен 3 бита (log28 = 3).
Информационный объём такого изображения увеличивается в три раза: V = 30000бит.
Рассмотрим, сколько потребуется бит для отображения цветной точки: для 8 цветов необходимо 3 бита; для 16 цветов — 4 бита; для 256 цветов — 8 битов (1 байт).
Разные цвета и их оттенки получаются за счёт наличия или отсутствия трёх основных цветов (красного, синего, зеленого) и степени их яркости. Каждая точка на экране кодируется с помощью 4 битов.
Цветные изображения могут отображаться в различных режимах, соответственно изменяется и информационный объём точки (Рис. 4).
Описание цвета пикселя является кодом цвета.
Количество бит, отводимое на каждый пиксель для представления цвета, называют глубиной цвета (англ. color depth). От количества выделяемых бит зависит разнообразие палитры.
Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита.
Чем больше глубина цвета, тем больше объем графического файла.
Для хранения растрового изображения размером 32×32 пикселя отвели 512 байтов памяти.
Каково максимально возможное число цветов в палитре изображения?
Цвет на Web-страницах кодируется в виде RGB-кода в шестнадцатеричной системе: #RRGGBB, где RR, GGи BB — яркости красного, зеленого и синего, записанные в виде двух шестнадцатеричных цифр; это позволяет закодировать 256 значений от 0 (0016) до 255 (FF16) для каждой составляющей.
При обозначении цветов в HTML-документах вначале ставят знак номера #.
В HTML: #FF0000 —интенсивно красный цвет, #00FF00 — зелёный цвет, #0000FF — синий цвет. Отсутствие цветов (#000000) даёт чёрный цвет, а самое интенсивное сочетание всех трёх каналов (#FFFFFF) даёт белый цвет.
FF — наибольшая яркость цветовой компоненты, для получения различных оттенков одного и того же цвета изменяют яркость.
Чтобы получить светлый оттенок какого-то «чистого» цвета, нужно одинаково увеличить нулевые составляющие; например, чтобы получить светло-красный цвет, нужно сделать максимальной красную составляющую и, кроме этого, одинаково увеличить остальные — синюю и зелёную: #FF9999 (сравните с красным: #FF0000).
Чтобы получить тёмный оттенок чистого цвета, нужно одинаково уменьшить все составляющие, например, #660066 — это тёмно-фиолетовый цвет (сравните с фиолетовым #FF00FF).
Заметим, что если старший бит в коде (первая, третья или пятая цифра) находится в диапазоне от 0 до 3, то можно считать, что эта цветовая компонента отсутствует в цвете, то есть #0F0F0F — это чёрный цвет.
Также следует отметить, что равное или почти равное сочетание цветовых компонент обозначает серый цвет разной интенсивности.
Векторное изображение представляет собой совокупность графических примитивов. Каждый примитив состоит из элементарных отрезков кривых, параметры которых (координаты узловых точек, радиус кривизны и пр.) описываются математическими формулами.
Для каждой линии указываются её тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет, а замкнутые фигуры дополнительно характеризуются типом заливки.
Рассмотрим, например, такой графический примитив, как окружность радиуса r. Для её построения необходимо и достаточно следующих исходных данных:
— координаты центра окружности;
— значение радиуса r;
— цвет заполнения (если окружность не прозрачная);
— цвет и толщина контура (в случае наличия контура).
Информация о векторном рисунке кодируется обычным способом, как хранятся тексты, формулы, числа, т. е. хранится не графическое изображение, а только координаты и характеристики изображения его деталей. Поэтому для хранения векторных изображений требуется существенно меньше памяти, чем растровых изображений.
Кодирование графической информации
Графическую информацию можно представлять в двух формах: аналоговой и цифровой.
Живописное полотно, цвет которого изменяется непрерывно — это пример аналогового представления.
Изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета — это цифровое или еще именуют как дискретное представление.
Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в цифровую. Этот процесс называется «кодирование», поскольку каждому элементу назначается конкретное значение в форме двоичного кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества цветных фрагментов (метод мозаики).
Графическая информация в аналоговой форме представляется в виде рисунка, картинки, а также слайда на фотопленке и полученную по нему аналоговую фотографию.
Изображение кодируется в цифровую форму с использованием элементарных геометрических объектов, таких как точки, линии, сплайны и многоугольники или матрицы фиксированного размера, состоящей из точек (пикселей) со своими геометрическими параметрам.
Современная компьютерная графика
Научная графика. Это направление появилось самым первым. Назначение — визуализация (т. е. наглядное изображение) объектов научных исследований, графическая обработка результатов расчетов, проведение вычислительных экспериментов с наглядным представлением их результатов (Рис. 6).
Рис. 6 График комплексной функции в четырехмерном (4D) пространстве.
Деловая графика. Эта область компьютерной графики предназначена для создания иллюстраций, часто используемых в работе различных учреждений.
Плановые показатели, отчетная документация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы (Рис. 7).
Рис. 7 Графики, круговые и столбчатые диаграммы.
Программные средства деловой графики обычно включаются в состав табличных процессоров (электронных таблиц).
Плановые показатели, отчетная документация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы (Рис. 7).
Конструкторская графика. Она используется в работе инженеров-конструкторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом систем автоматизации проектирования (САПР). Графика в САПР используется для подготовки технических чертежей проектируемых устройств (Рис. 8).
Рис. 8. Графика в САПР.
Графика в сочетании с расчетами позволяет проводить в наглядной форме поиск оптимальной конструкции, наиболее удачной компоновки деталей, прогнозировать последствия, к которым могут привести изменения в конструкции. Средствами конструкторской графики можно получать плоские изображения (проекции, сечения) и пространственные, трехмерные, изображения.
Иллюстративная графика. Программные средства иллюстративной графики позволяют человеку использовать компьютер для произвольного рисования, черчения подобно тому, как он это делает на бумаге с помощью карандашей, кисточек, красок, циркулей, линеек и других инструментов. Пакеты иллюстративной графики не имеют какой-то производственной направленности. Поэтому они относятся к прикладному программному обеспечению общего назначения.
Простейшие программные средства иллюстративной графики называются графическими редакторами.
Художественная и рекламная графика. Это сравнительно новая отрасль, но уже ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации и многое другое.
Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этого класса графических пакетов является возможность создания реалистических (очень близких к естественным) изображений, а также «движущихся картинок» (рис. 9).
Для создания реалистических изображений в графических пакетах этой категории используется сложный математический аппарат.
Рис. 9 Художественная графика.
Компьютерная анимация. Получение движущихся изображений на дисплее ЭВМ называется компьютерной анимацией. Слово «анимация» означает «оживление».
В недавнем прошлом художники-мультипликаторы создавали свои фильмы вручную. Чтобы передать движение, им приходилось делать тысячи рисунков, отличающихся друг от друга небольшими изменениями. Затем эти рисунки переснимались на кинопленку. Система компьютерной анимации берет значительную часть рутинной работы на себя. Например, художник может создать на экране рисунки лишь начального и конечного состояний движущегося объекта, а все промежуточные состояния рассчитает и изобразит компьютер. Такая работа также связана с расчетами, опирающимися на математическое описание данного типа движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.
Объекты называются самоподобными когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.
Рис.10 Фрактальная фигура.
Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранятся и изображение строится исключительно по уравнениям.
Объекты называются самоподобными, когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.
Любое изображение можно закодировать с помощью чего
У нас получился так называемый растровый рисунок, состоящий из квадратиков-пикселей.
Пиксель (англ. pixel = picture element, элемент рисунка) – это наименьший элемент рисунка, для которого можно задать свой цвет.
заменяем белые пиксели нулями, а черные – единицами; | |
Ширина этого рисунка – 8 пикселей, поэтому каждая строчка таблицы состоит из 8 двоичных разрядов – бит. Чтобы не писать очень длинную цепочку нулей и единиц, удобно использовать шестнадцатеричную систему счисления, закодировав 4 соседних бита (тетраду) одной шестнадцатеричной цифрой. Например, для первой строки получаем код 1A16: | |
Кодирование цвета
Что делать, если рисунок цветной? В этом случае для кодирования цвета пикселя уже не обойтись одним битом. Например, в показанном на рисунке изображении российского флага 4 цвета: черный, синий, красный и белый. Для кодирования одного из четырех вариантов нужно 2 бита, поэтому код каждого цвета (и код каждого пикселя) будет состоять из двух бит. Пусть 00 обозначает черный цвет, 01 – красный, 10 – синий и 11 – белый. Тогда получаем такую таблицу:
Равномерное уменьшение яркости всех каналов делает темный цвет, например, цвет с кодом (100,0,0) – тёмно-красный.
|
Глубина цвета – это количество бит, используемое для кодирования цвета пикселя.
24-битное кодирование цвета часто называют режимом истинного цвета (англ. True Color – истинный цвет). Для вычисления объема рисунка в байтах при таком кодировании нужно определить общее количество пикселей (перемножить ширину и высоту) и умножить результат на 3, так как цвет каждого пикселя кодируется тремя байтами. Например, рисунок размером 20×30 пикселей, закодированный в режиме истинного цвета, будет занимать 20×30×3 = 1800 байт. Конечно, здесь не учитывается сжатие, которое применяется во всех современных форматах графических файлов. Кроме того, в реальных файлах есть заголовок, в котором записана служебная информация (например, размеры рисунка).
Очень часто (например, в схемах, диаграммах и чертежах) количество цветов в изображении невелико (не более 256). В этом случае применяют кодирование с палитрой.
Цветовая палитра – это таблица, в которой каждому цвету, заданному в виде составляющих в модели RGB, сопоставляется числовой код.
Кодирование с палитрой выполняется следующим образом:
красный: RGB-код (255,0,0); двоичный код 01 2 ;
синий: RGB-код (0,0,255); двоичный код 10 2 ;
белый: RGB-код (255,255,255); двоичный код 11 2 ;
Поэтому палитра, которая обычно записывается в специальную служебную область в начале файла (ее называют заголовком файла), представляет собой четыре трехбайтных блока:
| ||||||||||||||||||||||||||
Палитры с количеством цветом более 256 на практике не используются. | ||||||||||||||||||||||||||
Итак, при растровом кодировании рисунок разбивается на пиксели (дискретизируется). Для каждого пикселя определяется единый цвет, который чаще всего кодируется с помощью RGB-кода. На практике эти операции выполняет сканер(устройство для ввода изображений) и цифровой фотоаппарат. | ||||||||||||||||||||||||||
Растровое кодирование имеет достоинства: | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
и недостатки: | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
Существует много разных форматов растровых рисунков. Чаще всего встречаются следующие: | ||||||||||||||||||||||||||
Свойства рассмотренных форматов сведены в таблицу: | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
Вы уже знаете, что все виды информации хранятся в памяти компьютера в виде двоичных кодов, то есть цепочек из нулей и единиц. Получив такую цепочку, абсолютно невозможно сказать, что это – текст, рисунок, звук или видео. Например, код 110010002 может обозначать число 200, букву ‘И’, одну из составляющих цвета пикселя в режиме истинного цвета, номер цвета в палитре для рисунка с палитрой 256 цветов, цвета 8 пикселей черно-белого рисунка и т.п. Как же компьютер разбирается в двоичных данных? В первую очередь нужно ориентироваться на расширение имени файла. Например, чаще всего файлы с расширением .txt содержат текст, а файлы с расширениями .bmp, .gif, .jpg, .png – рисунки. | ||||||||||||||||||||||||||
Однако расширение файла можно менять как угодно. Например, можно сделать так, что текстовый файл будет иметь расширение .bmp, а рисунок в формате JPEG – расширение .txt. Поэтому в начало всех файлов специальных форматов (кроме простого текста, .txt) записывается заголовок, по которому можно «узнать» тип файла и его характеристики. Например, файлы в формате BMP начинаются с символов «BM», а файлы в формате GIF – с символов «GIF». | ||||||||||||||||||||||||||
Кроме того, в заголовке указывается размер рисунка и его характеристики, например, количество цветов в палитре, способ сжатия и т.п. Используя эту информацию, программа «расшифровывает» основную часть файла и выводит его на экран. | ||||||||||||||||||||||||||
Для чертежей, схем, карт применяется другой способ кодирования, который позволяет не терять качество при изменении размеров изображения. Рисунок хранится как набор простейших геометрических фигур (графических примитивов): линий, многоугольников, сглаженных кривых, окружностей, эллипсов. Такой рисунок называется векторным. | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
Векторный рисунок можно «разобрать» на части, растащив мышкой его элементы, а потом снова собрать полное изображение: | ||||||||||||||||||||||||||
При векторном кодировании для отрезка хранятся координаты его концов, для прямоугольников и ломаных – координаты вершин. Окружность и эллипс можно задать координатами прямоугольника, в который вписана фигура. Сложнее обстоит дело со сглаженными кривыми. На рисунке изображена линия с опорными точками. | ||||||||||||||||||||||||||
У каждой из этих точек есть «рукоятки» (управляющие линии), перемещая концы этих рукояток можно регулировать наклон касательной и кривизну всех участков кривой. Если обе рукоятки находятся на одной прямой, получается сглаженный узел, если нет – то угловой узел. Таким образом, форма этой кривой полностью задается координатами опорных точек и координатами рукояток. Кривые, заданные таким образом, называют кривыми Безье в честь их изобретателя французского инженера Пьера Безье. | ||||||||||||||||||||||||||
Векторный способ кодирования рисунки обладает значительными преимуществамив сравнении с растровым тогда, когда изображение может быть полностью разложено на простейшие геометрические фигуры (например, чертеж, схема, карта, диаграмма). В этом случае при кодировании нет потери информации. | ||||||||||||||||||||||||||
Объем файлов напрямую зависит от сложности рисунка – чем меньше элементов, тем меньше места занимает файл. Как правило, векторные рисунки значительно меньше по объему, чем растровые. | ||||||||||||||||||||||||||
При изменении размера векторного рисунка не происходит никакого искажения формы элементов, при увеличении наклонных линий не появляются «ступеньки», как при растровом кодировании: | ||||||||||||||||||||||||||
а) | ||||||||||||||||||||||||||