металлургический завод что делает
Определение
Процесс производства продукции из металлов включает такие этапы, как:
добыча и подготовка руды;
Металлургическая промышленность включает процессы получения многих элементов периодической таблицы, кроме газов и галоидов.
Черная
Черная металлургия включает такие направления, как:
Производимая на металлургических комбинатах продукция бывает:
основной, то есть конечным продуктом, готовым для эксплуатации;
побочной, то есть продуктом, который получается при производстве основной продукции;
попутной, то есть продукцией, оставшейся после производства основной и побочной, которая используется либо как вторсырье, либо как есть.
Добыча
Металлы получают путем извлечения из руд или вторсырья. Вся руда, содержащая ценные элементы, делится на богатую (более 55% ценных элементов), бедную (менее 50 %) и убогую (менее 25 %).
При добыче руды используются три основных метода:
Подземный метод используется в том случае, если породы лежат глубоко под землей. По сравнению с открытым, этот метод дороже из-за необходимости специального технического оснащения. Кроме этого, он актуальнее, чем другие методы, так как запасы железной руды, залегающей близко к поверхности, практически истощены. Таким способом добывается более 70% железной руды.
Комбинированный способ, как понятно из названия, сочетает в себе два вышеуказанных метода.
Производство
В металлургии под производством черных металлов понимают сложный технологический процесс, который можно разделить на два этапа:
переработка чугуна в сталь.
Процесс передела чугуна в сталь подразумевает снижение уровня углерода и примесей способом избирательного окисления и перевода их в шлак при выплавке. Для этого в расплавленный чугун вводят ферросплавы с содержанием Al, Mn и Si. Они образуют в стали труднорастворимые оксиды, которые частично всплывают в шлак.
Продукция
Продукция черной металлургии широко используется в машиностроении, строительстве, коммунальном хозяйстве, военно-промышленном комплексе и сельском хозяйстве.
К основной продукции черной металлургии можно отнести:
металлопрокат (листовой, фасонный, сортовой) ;
чугун передельный и литейный;
Цветная
К цветной металлургии относятся все виды металлов, кроме железосодержащих. Сама отрасль делится на металлургию легких и тяжелых металлов, которые основываются на таких свойствах металла, как плотность и вес. Все виды металлов, используемых в цветной металлургии, можно разделить на:
легкие, к которым относятся магний, алюминий, титан;
тяжелые, к которым относятся олово, цинк, свинец, никель, медь;
редкоземельные, к которым относятся эрбий, тербий, самарий, празеодим, неодим, лантан, диспрозий, церий, иттрий;
искусственные, к которым принадлежат америций, технеций;
малые, к которым относятся ртуть, кобальт, мышьяк, сурьма, кадмий, висмут;
рассеянные, к которым принадлежат селен, германий, таллий, индий, галлий, цирконий;
легирующие, к которым относятся ванадий, ниобий, тантал, молибден, вольфрам;
благородные, к которым относятся платина, золото, серебро.
По сравнению с черной, цветная металлургия более энергозатратная. Это объясняется низким содержанием полезных веществ в цветных металлах и, как следствие, большим количеством отходов, требующих особенной утилизации и переработки химическими способами.
Добыча сырья и его обогащение
Цветные металлы получают из рудного концентрата, то есть из обогащенной руды. Под обогащением понимают разделение руды на металлы и минералы, что позволяет искусственно увеличить содержание металлов в сырье. При разделении используются такие технологии, как дробление, измельчение, сортировка и переработка путём обезвоживания. После получения металла из руды он проходит обработку и шлифовку.
Рафинирование
Черновые металлы содержат различные примеси, которые влияют на физико-химические свойства металлов, а также содержат важные дорогостоящие элементы, например золото или серебро. Поэтому одним из важнейших этапов обработки металла является рафинирование, то есть очистка. Рафинирование проводится тремя способами:
химическим, который который также называется аффинажем, применяется при глубокой очистке золота;
Получение сплавов
Сплавы не получаются из двух похожих металлов. Например, цинка и свинца.
Самыми ценными сплавами являются:
Продукция отрасли
Человеку, незнакомому близко с металлургией, при упоминании о цветных металлах первыми на ум приходят золото и серебро. Выше было рассмотрено все многообразие цветной металлургии. Здесь же рассмотрим продукцию, которая производится в данной сфере. Это:
Типы баз и факторы их размещения
Прежде чем рассмотреть основные металлургические базы в мире и в России, стоит кратко описать типы баз и факторы их размещения.
В металлургической промышленности выделяют 3 типа баз.
База, работающая с собственными рудой и углем.
База, работающая либо с собственной рудой и привозным углем, либо с привозной рудой и собственным углем.
Работающая недалеко от угольных бассейнов или недалеко от потребителя.
Факторам, влияющими на расположение металлургических центров, можно назвать:
транспортный, к которому относятся предприятия, использующие привозные руду и уголь, так как находятся вдали от их источников;
топливный, к которому относятся предприятия, находящиеся недалеко от угольных бассейнов;
сырьевой, к которому относятся предприятия, расположенные поблизости к местонахождениям руды.
Металлургия в мире
Лидирующими компаниями, которые регулируют мировой процесс добычи и производства руды и металлов, являются компании Arcelor Mittal, Hebei Iron & Steel, Nippon Steel.
Металлургия России
В российской экономике металлургия занимает второе место после нефтегазовой промышленности. В данной сфере трудятся более 2 % работающих граждан в стране на 1,5 тыс. предприятий.
В РФ три есть основные базы черной металлургии, размещение которых объясняется близостью источников руды и бассейнов угля:
Центральная металлургическая база находится в Белгородской и Курской областях. Крупнейшим металлургическим комбинатом и заводами является Новолипецкий металлургический комбинат и заводы в Старом Осколе и Туле.
93% процента выпускаемой продукции приходится на долю шести крупных центров металлургии. Это:
ОАО “Новолипецкий металлургический комбинат”;
ОАО “Магнитогорский металлургический комбинат”.
металлургический завод
Полезное
Смотреть что такое «металлургический завод» в других словарях:
Металлургический завод Святого Антония (Оберхаузен) — Металлургический завод Святого Антония (нем. St. Antony Hütte) бывший металлургический завод в поселке Клостерхардт (ныне входит в состав района Остерфельд города Оберхаузен) (федеральная земля Северный Рейн Вестфалия) … Википедия
Металлургический завод в Фёльклингене — Всемирное наследие ЮНЕСКО, объект № 687 рус. • … Википедия
Металлургический завод (Донецк) — Донецкий металлургический завод ДМЗ Донецкий металлургический завод градообразующее предприятие Донецка. Предриятие чёрной металлургии. Находится в Ленинском р … Википедия
Металлургический завод им. В. И. Ленина (Донецк) — Донецкий металлургический завод ДМЗ Донецкий металлургический завод градообразующее предприятие Донецка. Предриятие чёрной металлургии. Находится в Ленинском р … Википедия
Металлургический завод им. А. К. Серова — ОАО «Металлургический завод им. А. К. Серова» Тип Открытое акционерное общество Расположение … Википедия
Металлургический завод им.А.К.Серова — в прошлом Надеждинский сталерельсовый з д, построен в 1894 1896 в Богословском горном окр. Перм. губ. под рук. горного инженера А.А.Ауэрбаха. Созданный по принципу замкнутого цикла в составе доменных, мартеновских печей и прокатного стана,… … Уральская историческая энциклопедия
Варшавский металлургический завод — (металлургический завод «Варшава») одно из крупнейших предприятий металлургической промышленности Польши, производит углеродистую и легированную сталь и изделия из неё. Строительство завода началось в 1952 на основе технической… … Большая советская энциклопедия
Макеевский металлургический завод имени С. М. Кирова — Основная статья: Макеевский металлургический комбинат Макеевский металлургический завод Тип Закрытое акционерное общество Год основания 1898 Расположение 1898 1917 … Википедия
Новосибирский металлургический завод имени Кузьмина — Тип Открытое акционерное общество Год основания 1941 Прежние названия Новосибирский металлургический завод им. А.Н. Кузьмина при ВПО по производству кач … Википедия
Выксунский металлургический завод — Выксунский металлургический завод … Википедия
Металлургическое производство
Металлургическое производство – это область науки, техники и отрасль промышленности, охватывающая различные процессы получения металлов из руд или других материалов, а также процессы, способствующие улучшению свойств металлов и сплавов.
Оно включает в себя:
Основная продукция чёрной металлургии:
Продукция цветной металлургии:
1. Материалы для производства металлов и сплавов
Для производства чугуна, стали и цветных металлов используют:
Промышленная руда – это природное минеральное образование, содержащее какой-либо металл или несколько металлов в концентрациях, при которых экономически целесообразно их извлечение.
Флюсы – это материалы, загружаемые в плавильную печь для образования шлаков – легкоплавких соединений с пустой породой руды или концентратом и золой топлива.
Топливо – это горючие вещества, основной составной частью которых является углерод; они применяются с целью получения при их сжигании тепловой энергии. В металлургических печах используют: кокс, природный газ, мазут, доменный (колошниковый) газ. Кокс получают из коксующихся сортов каменного угля путём сухой перегонки при Т= 1000 0 С.
Огнеупорные материалы – это материалы и изделия преимущественно на основе минерального сырья, обладающие огнеупорностью не ниже 1580 0 С. Их применяют для изготовления внутреннего облицовочного слоя (футеровки) металлургических печей и ковшей для расплавленного металла.
2. Производство чугуна и стали
Материалы, применяемые в доменном производстве, и их подготовка к плавке.
Для выплавки чугуна в доменных печах используют железные руды, топливо, флюсы.
Руды: Железные руды содержат (55…60%) железа в различных соединениях (оксидов, гидроксидов, карбонатов и др.), а также пустую породу.
Марганцевые руды применяют для выплавки сплава железа с марганцем – ферромарганца, а также передельный чугунов. Хромовые руды используют для производства феррохрома, металлического хрома и огнеупорных материалов – хромомагнезитов. Комплексные руды используют для выплавки природно-легированных чугунов. Это железомарганцевые руды, хромоникелевые руды, железованадиевые руды.
Топливо: кокс – для получения необходимой температуры и создавать условия для восстановления железо из руды; в целях экономии часть кокса заменяют природным газом, мазутом, пылевидным топливом.
Флюсы: это известняк CaCО3 или доломитизированный известняк, содержащий CaCО3 и МgСО3. Это необходимо для удаления серы из металла, в который она переходит из кокса и железной руды при плавке. Для нормальной работы доменной печи шлак должен быть достаточно жидкотекучим при температуре 1450 0 С.
Подготовка руд к доменной плавке.
Цель этой подготовки – увеличить содержание железа в шихте и уменьшение в ней вредных примесей – серы, фосфора, а также повышение однородности по кусковатости и химическому составу:
Применяют два способа окускования.
Выплавка чугуна.
Чугун выплавляют в печах шахтного типа – домнах (рис. 1). Сущность процесса получения чугуна в доменных печах заключается в восстановлении оксидов железа, входящих в состав руды, оксидом углерода, водородом, выделяющимся при сгорании топлива в печи и твёрдым углеродом, выделяющимся при сгорании топлива в печи. На рис. — фотография домны шахтного типа.
Эффективность работы доменной печи характеризуется пребыванием шихты в доменной печи (5 – 6 ч) и длительностью компании (5 – 6 лет и более непрерывной работы).
Физико-химические процессы доменной плавки.
Условно процессы, протекающие в доменной печи, разделяют на:
Горение топлива. Вблизи фурм углерод кокса, взаимодействует с кислородом воздуха, сгорает. При этом в печи несколько выше уровня фурм развивается температура выше 2000 0 С.
Восстановления железа. Шихта (агломерат, кокс) опускается навстречу потоку газов, и при температуре 500…570 0 С начинается восстановление оксидов железа. Восстановление железа из руды в доменной печи происходит по мере продвижения шихты вниз по шахте печи и повышения температуры в несколько стадий – от высшего оксида к низшему:
Науглероживание железа. В шахте доменной печи наряду с восстановлением железа происходит и его науглероживание при взаимодействии с оксидом углерода (СО2), коксом, сажистым углеродом. Это приводит к образованию жидкого расплава, который каплями начинает стекать в горн.
Таким образом, в результате процесса восстановления оксидов железа, части оксидов марганца и кремния, фосфатов и сернистых соединений, растворения в железе С, Mn, Si, P, S в доменной печи образуется чугун.
Образование шлака. Шлакообразования активно происходит в распаре после окончания процессов восстановления железа путём сплавления флюсов, добавляемых в доменную печь для обеспечения достаточной жидкотекучести при температуре 1400…1500 0 С, оксидов пустой породы и золы кокса. Шлак стекает в горн и скапливается на поверхности жидкого чугуна благодаря меньшей плотности.
Чугун выпускают из печи каждые 3…4 ч, а шлак 1…1,5 ч. Чугун транспортируют в кислородно-конверторные или мартеновские цехи для передела в сталь. Чугун, не используемый в жидком виде, разливают в изложницы разливочной машины, где он затвердевает в виде чушек-слитков массой 45 кг.
Рис. 1. Устройство доменной печи: 1 – горн; 2 – воздухопровод; 3 – заплечики; 4 – распар; 5 – шахта; 6 – колошник; 7 – приёмная воронка; 8 – засыпной аппарат; 9 – вагонетка; 10 – малый конус; 11 – чаша; 12 – мост; 13 — большой конус (предотвращает выход газов из доменной печи в атмосферу).
Рис. Домна шахтного типа
Продукты доменной плавки.
Чугун – основной продукт доменной плавки:
На рис. 3 показан выпуск чугуна из домны.
Рис. 3. Выпуск чугуна из домны в ковши
Производство стали.
Сущность процесса. Сущность любого металлургического передела чугуна в сталь является снижение содержания углерода и примесей путём их избирательного окисления и перевода в шлак и газы в процессе плавки.
Основными материалами для производства стали являются передельный чугун и стальной лом (скрап). Содержание углерода и примесей в стали значительно ниже, чем в чугуне.
Процессы выплавки стали осуществляют в несколько этапов. Первый этап – расплавление шихты и нагрев ванны жидкого металла.
На этом этапе температура металла невысока; интенсивно происходит окисление железа, образования оксида железа и окисление примесей Si, P, Mn. Наиболее важная задача этого процесса – удаления фосфора (одной из вредных примесей стали).
Второй этап – «кипение» металлической ванны – начинается по мере её прогрева до более высоких, чем на первом этапе температур. Кипения ванны, является главным в процессе выплавки, стали.
В этот же период создаются условия для удаления серы из металла. Чем выше температура, тем больше количество FeS растворяется в шлаке, т.е. больше серы переходит из металла в шлак.
Третий этап (завершающий) – раскисления стали – заключается в восстановлении оксида железа, растворённого в жидком металле.
При плавке повышения содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород – вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах.
Сталь раскисляют двумя способами:
Осаждающее раскисления осуществляют введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия). В результате восстанавливается железо, а образующиеся оксиды марганца, кремния и алюминия удаляются в шлак.
Диффузионное раскисления осуществляют раскислением шлака. Ферромарганец, ферросилиций и другие раскислители в мелкоразмельчённом виде загружают на поверхность шлака.
В зависимости от степени раскислённости выплавляют спокойные, кипящие и полуспокойные стали.
Спокойная сталь получается при полном раскислении в печи и ковше. Кипящая сталь раскисленна в печи не полностью. Её раскисления продолжается в изложнице при затвердевании слитка благодаря взаимодействию FeO и углерода, который содержатся в металле. Газы выделяются в виде пузырьков, вызывая её кипение. Кипящая сталь не содержит неметаллических включений – продуктов раскисления, поэтому
обладает хорошей пластичностью.
Полуспокойная сталь имеет промежуточную раскислённость между спокойной и кипящей.
Легирование стали осуществляют введением ферросплавов или чистых металлов в необходимом количестве в расплав.
Легирующие элементы (Ni, Co, Mo, Cu), сродство к кислороду у которых меньше, чем у железа, при плавке и разливке практически не окисляются, и поэтому их вводят в печь в любое время плавки (обычно вместе с остальной шихтой). Легирующие элементы, у которых сродство к кислороду больше, чем у железа (Si, Mn, Al, Cr, V, Ti и др.), вводят в металл после раскисления или одновременно с ним в конце плавки, а иногда непосредственно в ковш.
Технологические процессы производства стали.
Стали производят в различных по принципу действия металлургических агрегатах: кислородных конвертерах, электрических и индукционных печах и др.
Производство стали в кислородных конвертерах.
Кислородно-конвертерный процесс – это выплавка стали из жидкого чугуна в конвертере с основной футеровкой (магнезит и доломит) и продувкой кислородом через водохлаждаемую форму (рис 4.).
Перед плавкой конвертер наклоняют (рис. 4,1) через горловину с помощью завалочных машин загружают скрап, заливают чугун при температуре 1250 – 1400 о С. После этого конвертер поворачивают в вертикальное рабочее положение, внутрь его водоохлаждаемую форму и через неё подают кислород под давлением 0,9 – 1,4 МПа. Одновременно с началом продувки в конвертер загружают известь, боксит, железную руду (рис. 4,2). Струи кислорода проникают в металл, вызывают его циркуляцию в конвертере и перемешивание со шлаком. Благодаря интенсивному окислению примесей чугуна при взаимодействии с кислородом в зоне под фурмой развивается температура до 2400 о С.
Подачу кислорода заканчивают, когда содержание углерода в металле соответствует заданному. После этого конвертер поворачивают и выпускают сталь в ковш (рис. 4, 3).
При выпуске стали из конвертера её раскисляют в ковше осаждающим методом ферромарганцем, ферросилицием и алюминием; затем из конвертера сливают шлак (рис. 4,4).
Вместимость конвертера 70 – 350 т расплавленного чугуна.
Рис 4. Последовательность технологических операций при выплавке стали в кислородных конвертерах
Шихтовыми материалами кислородно-конвертерного процесса являются:
В кислородном конвертере благодаря присутствию шлаков с большим содержанием СaO и FeO, перемешиванию металла и шлака создаются условия для удаления из металла фосфора в начале продувки ванны кислородом, когда её температура ещё не высока. В чугунах, перерабатываемых в конвертерах, не должно быть более 0,15% Р и 0,07% S.
В кислородных конвертерах выплавляют: конструкционные стали с различным содержанием углерода, кипящие и спокойные.
В кислородных конвертерах трудно выплавлять стали, содержащие легко-окисляющие легирующие элементы, поэтому в них выплавляют низколегированные (до 2– 3% легирующих элементов) стали. Легирующие элементы вводят в ковш, расплавив их в электропечи, или твёрдые ферросплавы, вводят в ковш перед выпуском из него, стали. Плавка в конвертерах вместимостью 130 – 300 т заканчивается через 25 – 30 мин.
Производство стали в электропечах.
Плавильные электропечи имеют преимущества по сравнению с другими плавильными агрегатами, так как в них можно получать высокую температуру металла, создавая окислительную, восстановительную, нейтральную атмосферу и вакуум, что позволяет выплавлять сталь любого состава, раскислять металл с образованием минимального количества неметаллических включений – продуктов раскисления. Поэтому электропечи используют для выплавки конструкционных, высоколегированных, инструментальных, специальных сплавов и сталей.
Для плавки стали используют дуговые и индукционные печи (рис. 5).
Рис 5. Схема дуговой плавильной электропечи
Дуговая плавильная печь работает на трёх фазном переменном токе. Электрический ток от трансформатора мощностью 25 – 45 кВ *А. Рабочее напряжение 160 – 600 В, сила тока 1 – 10 кА. Во время работы печи длина дуги регулируется автоматически, путём перемещения электродов. На рис. 6 изображена дуговая плавильная печь.
Рис. 6. Дуговая плавильная электропечь постоянного тока
Рис. 7. Выпуск стали из дуговой плавильной электропечи
Вместимость этих печей 0,5 – 400 т. В металлургических цехах используют электропечи с основной футеровкой, а в литейных – с кислой.
Для определения химического состава металла берут пробы и при необходимости в печь вводят ферросплавы для получения заданного химического состава металла, после чего выполняют, конечную стадию раскисления, стали алюминием и силикокальцием и выпускают металл из печи в ковш рис. 7.
При выплавке легированных сталей в дуговых печах в сталь вводят легирующие элементы в виде ферросплавов.
Индукционная тигельная плавильная печь (рис 8).
Через индуктор (4) от генератора промышленной частоты (50 Гц) или от генератора высокой частоты (500 – 2500 Гц) проходит однофазный переменный ток. Ток создаёт переменный магнитный поток, пронизывающий куски металла в тигле. Переменный магнитный поток наводит в них мощные вихревые токи Фуко (1), нагревающие металл до расплавления и необходимых температур перегрева. Тигель изготовляют из основных или кислых огнеупоров (5). Вместимость тигля 60 кг – 25 т. (2) – свод тигельной печи. (3) – горловина для слива металла.
Рис 8. Схема индукционной тигельной плавильной печи
Индукционные печи обладают преимуществами перед дуговыми печами: в них отсутствует электрическая дуга, что позволяет выплавлять сталь с низким содержанием углерода, газов и малым угаром элементов; при плавке в металле возникают электродинамические силы, которые перемешивают металл и способствуют выравниванию химического состава, всплыванию неметаллических включений; небольшие размеры печей позволяют помещать их в камеры, где можно создавать любую атмосферу или вакуум.
Однако эти печи имеют малую стойкость футеровки, и температура шлака в них недостаточна для протекания в них металлургических процессов между металлом и шлаком.
В индукционных печах с основной футеровкой выплавляют, высококачественные легированные, стали с высоким содержанием марганца, никеля, титана, алюминия, а в печах с кислой футеровкой – конструкционные, легированные стали.
При вакуумной индукционной плавке индуктор с тиглем, дозатор шихты и изложницы помещают в вакуумные камеры. Плавка, введение легирующих добавок, раскислителей, разливка металла в изложницы проводятся без нарушения вакуума в камере. Таким способом получают сплавы высокого качества с малым содержанием газов, неметаллических включений, сплавы, легированные любыми элементами. На рис. 9. изображена индукционная тигельная плавильная печь.
Рис. 9. Индукционная тигельная плавильная печь
На рис. 10 зафиксирован рабочий момент плавки стали в индукционной тигельной плавильной печи.
Рис. 10. Плавка стали в индукционной тигельной плавильной печи
Разливка стали (рис. 11; 12; 13).
Выплавленную сталь выпускают из плавильной печи в разливочный ковш, из которого её разливают в изложницы или кристаллизаторы машины для непрерывного литья заготовок (МНЛЗ). В изложницах или кристаллизаторах сталь затвердевает, и получаются слитки, которые подвергают прокатке, ковке.
Рис. 11. Схема разливки стали сверху непосредственно из ковша
Рис. 12. Сифонная разливка стали: где 1— ковш, 2 — центровой литник, 3— сифонные кирпичи, 4— поддон, 5 — изложницы, 6 — шлакоуловители, 7 — огнеупорная масса
Сверху отливаются слитки крупного развеса (до 200 т), а также некоторые сорта легирован стали (быстрорежущей, шарикоподшипниковой и др.), в которых допустимо минимальное содержание неметаллических включений.
По сифонному способу из ковша 1 через центровой литник 2 одновременно заливается в зависимости от развеса слитков от двух до 60—
100 изложниц. При этом металл, проходя по центровому литнику 2, поступает по системе каналов, образованных специальными сифонными кирпичами 3 в чугунном поддоне 4, к каждой изложнице 5. Преимущества сифонного способа: можно отливать одной струей большое число слитков, поверхность слитков получается чистой, вследствие уменьшения высоты и объема усадочной раковины можно получить качественные слитки развесом до 20—30 г стали. Недостаток сифонной разливки — трудоемкая работа по сборке изложниц под разливку и большой расход металла на литники. Поэтому при разливке дорогостоящих сталей этот способ не применяют.
Прогрессивным способом является непрерывная разливка стали (рис. 13).
Металл из ковша заливается непрерывной струей в промежуточное устройство, а из него поступает в охлаждаемые водой кристаллизаторы, в которые предварительно закладываются стальные заготовки, образующие дно. При соприкосновении жидкого металла с этими заготовками
(затравками) и стенками кристаллизаторов начинается быстрое затвердевание его, еще более усиливающееся при проходе через зону вторичного охлаждения. Затвердевшая заготовка вытягивается роликами, действующими от специального механизма к тележкам газорезок, разрезается на куски, а затем по конвейеру поступает в прокатный цех. Применение способа непрерывной разливки стали позволяет сократить отходы металла с 15—20% при обычной разливке до 3—5%, т. е. в 5 раз.
Рис. 13. Схема машины непрерывного литья заготовок (МНЛЗ) Изложницы – чугунные формы для изготовления слитков (квадратных,
прямоугольных, круглых или многогранных поперечных сечений). Слитки квадратного сечения переделывают на сортовой прокат (двутавровые балки, швеллеры, уголки и т.д.). Слитки прямоугольного сечения переделывают на лист. Из слитков круглого сечения изготовляют трубы, колёса. Многогранные слитки используют для поковок.
Для прокатки отливают слитки массой 200 кг – 25 т; для поковок – массой 300 т и более. Обычно углеродистые спокойные и кипящие стали разливают в слитки массой до 25 т, легированные и высококачественные стали – в слитки массой 500 кг – 7 т, а некоторые сорта высоколегированных сталей – в слитки массой в несколько килограммов.
Машины непрерывного литья могут иметь несколько кристаллизаторов, что позволяет одновременно получать несколько слитков, которые могут быть прокатаны на сортовых станах, минуя блюминги и слябинги.
Строение слитка.
Залитая в изложницы сталь отдаёт теплоту её стенкам, поэтому затвердевание стали начинается у стенок изложницы. Толщина закристаллизовавшейся корки непрерывно увеличивается, при этом между жидкой сердцевиной слитка и твёрдой коркой металла располагается зона, в которой одновременно имеются растущие кристаллы и жидкий металл между ними. Кристаллизация слитка заканчивается вблизи его продольной оси.
Сталь затвердевает в виде кристаллов древовидной формы – дендритов.
Размеры и формы дендритов зависят от условий кристаллизации (рис. 14).
Рис. 14. Схема строения стальных слитков: а, г – спокойная сталь; б, д – кипящая сталь; в, г – полуспокойная сталь;
А – тонкая наружная корка мелкозернистых кристаллов; Б – зона крупных столбчатых кристаллов (дендриты); В – зона крупных неориентированных кристаллов; Г – мелкокристаллическая зона у донной части слитка.
Спокойная сталь затвердевает без выделения газов, в верхней части слитка образуется усадочная раковина, а в средней – усадочная осевая рыхлость.
Стальные слитки неоднородны по химическому составу. Химическая неоднородность, или ликвация, возникает вследствие уменьшения растворимости примесей в железе при его переходе из жидкого состояния в твёрдое. Ликвация бывает двух видов – дендритная и зональная.
Дендритная ликвация – неоднородность стали в пределах одного кристалла (дендрита) – центральной оси и ветвей. Например, при кристаллизации стали содержание серы на границах дендрита по сравнению с содержанием в центре увеличивается в 2 раза, фосфора – 1,2 раза, а углерода уменьшается почти наполовину.
Зональная ликвация – неоднородность состава стали в различных частях слитка. В верхней части из-за конвекции жидкого металла содержание серы, фосфора и углерода увеличивается в несколько раз, а в нижней части – уменьшается. Зональная ликвация приводит к отбраковке металла вследствие отклонения его свойств от заданных. Поэтому прибыльную и под прибыльную часть слитка, а также донную его часть при прокатке отрезают.
В слитках кипящей стали не образуется усадочные раковины: усадка стали, рассредоточена по полостям газовых пузырей, возникающих при кипении, стали, в изложнице. При прокатке слитка газовые пузыри завариваются.
Полуспокойная сталь сохраняет преимущества спокойной и кипящей сталей и не имеет их недостатков.
Полуспокойная сталь частично раскисляется в печи и ковше, а частично в изложнице. Слиток полуспокойной стали имеет в нижней части структуру спокойной стали, а в верхней – кипящей. Ликвация в верхней части слитка полуспокойной стали меньше, чем кипящей, и близка, к ликвации спокойной стали, но слитки полуспокойной стали, не имеют, усадочных раковин.
Способы повышения качества стали.
Развития машиностроения и приборостроения предъявляет возрастающие требования к качеству металла: его прочности, пластичности, газосодержанию. Улучшить эти показатели можно уменьшением в металле вредных примесей, газов, неметаллических включений.
Для повышения качества металла используют:
Обработка металла синтетическим шлаком заключается в следующем – смешивают жидкий шлак с жидкой сталью, происходит
реакция, при которой уменьшается содержание серы, кислорода и неметаллических включений в стали. Повышается её пластичность и прочность. Такие стали используют для изготовления ответственных деталей машин.
Вакуумирование стали проводят для понижения концентрации кислорода, водорода, азота и неметаллических включений. Для вакуумирования используется различные способы, например, вакуумирование в ковше, циркуляционное и поточное вакуумирование, струйное и порционное вакуумирование и др.
Электрошлаковый переплав (рис. 15). ЭШП применяют для выплавки высококачественных сталей для шарикоподшипников, жаропрочных сталей для дисков и лопаток турбин, валов компрессоров, авиационных конструкций. Переплаву подвергают выплавленный в дуговой печи и прокатанный на круглые прутки металл. Источником теплоты при ЭШП является шлаковая ванна, нагреваемая при прохождении через неё электрического тока. Электрический ток подводится к переплавляемому электроду, погружённому, в шлаковую ванну, и к поддону, установленному в водоохлаждаемом металлическом кристаллизаторе, в котором находится затравка. На рис. 16. изображена установка электрошлакового переплава стали.
Рис. 15. Схема электрошлакового переплава расходуемого электрода: а – кристаллизатор; б – включение установки 1 – электрод; 2 – шлаковая ванна; 3 – капли металла; 4 – металл; 5 – корка; 6 – слиток; 7 – кристаллизатор; 8 – затравка; 9 – поддон.
Рис. 16. Установка электрошлакового переплава стали
Вакуумно-дуговой переплав (ВДП) применяют в целях удаления из металла газов и неметаллических включении. Процесс осуществляется в вакуумно-дуговых печах с расходуемым электродом. На рис. 17. изображена схема на рис. 18. установка вакуумно-дуговой переплавки стали.
Рис. 17. Схема вакуумно-дуговой переплавки: 1 – корпус; 2 – водоохлаждаемый шток; 3 – электрод-катод; 4 – капли жидкого металла; 5 – жидкий металл; 6 – изложница; 7 – слиток; 8 – затравка-анод
В зависимости от требований, предъявляемых к получаемому металлу, расходуемый электрод изготовляют механической обработкой слитка, выплавленного в электропечах или в установках ЭШП.
Слитки ВДП содержат мало газов, неметаллических включений, отличаются высокой равномерностью химического состава, повышенными механическими свойствами. Из них изготовляют ответственные детали турбин, двигателей, авиационных конструкций. Масса слитков достигает 50 т.
Рис. 18. Установка вакуумно-дугового переплава стали
Плавку в электронно-лучевых печах (рис. 19) применяют для получения чистых и ультрачистых тугоплавких металлов (молибдена, ниобия, циркония и др.), для выплавки специальных сплавов и сталей.
Вакуум внутри печи, большой перегрев, вызванный пучком электронов, направленный на металл, и высокие скорости охлаждения слитка способствуют удалению газов и примесей, получению металла особо высокого качества. Однако при переплаве шихты, содержащей легко испаряющие элементы, изменяют химический состав металла.
Рис. 19 Схема электронно-лучевой печи
Плавку стали в плазменно-дуговых печах (рис. 20.), применяют для получения высококачественных, сталей и сплавов.
Источник теплоты – низкотемпературная плазма (30000 о С), получаемая в плазменных горелках. В этих печах можно создавать нейтральную среду заданного состава (аргон, гелий). Плазменно-дуговые печи позволяют быстро расплавить шихту, а в нейтральной газовой среде происходит дегазация выплавляемого металла, легкоиспаряющие элементы, входящие в его состав, не испаряются.
Рис. 20. Установка плазменно-дуговой печи
3. Производство цветных металлов
Производство меди.
Медь получают главным образом пирометаллургическим способом. Пирометаллургия – это совокупность металлургических процессов, протекающих при высоких температурах. Производство меди из медных руд включает в себя их обогащение, обжиг, плавку на полупродукт – штейн, выплавку из штейна черновой меди (конвертирование) и её очистку от примесей (рафинирование).
Для производства меди применяют медные руды, содержащие 1 – 6% Сu, а также отходы меди и её сплавы.
Черновая медь содержит 98,4 – 99,4% Сu и небольшое количество примесей. Эту медь разливают в изложницы. Черновую медь рафинируют для удаления вредных примесей и газов.
После огневого рафинирования получают медь чистотой 99 – 99,5% (рис. 21.). Из неё отливают чушки для выплавки сплавов меди (бронзы и латуни) или плиты для электролитического рафинирования. Электролитическое рафинирования ведут для получения чистой меди от примесей (более 99,5%Cu).
Рис. 21. Производство рафинированной меди
Производство алюминия.
Основным способом производства алюминия в настоящее время является электролитический. Электролиз – это совокупность процессов электрохимического окисления – восстановления, происходящих на погруженных в электролит электродов при прохождении электрического тока.
Основное сырьё для производства алюминия – алюминиевые руды: бокситы, нефелины, алуниты, каолины.
Производство алюминия включает в себя:
В процессе электролиза алюминий собирается на дне ванны под слоем электролита. Его периодически извлекают, используя специальное устройство. Для нормальной работы ванны на её дне оставляют немного алюминия рис. 22.
Алюминий, полученный электролизом, называют алюминием-сырцом. В нём содержатся металлические и неметаллические примеси, газы. Примеси удаляют рафинированием, для чего продувают хлор через расплав алюминия. Затем жидкий алюминий выдерживают в ковше или в электропечи в течение 30 – 45 мин при температуре 690 – 730 о С для всплывания неметаллических включений и выделения газов из металла. После рафинирования чистота первичного алюминия составляет 99,5 – 99,85%. На рис. 23. фотография Уральского алюминиевого завода.
Рис. 22. Производство алюминия
Рис. 23. Уральский алюминиевый завод
Производство магния.
Для производства магния наибольшее распространение получил электролитический способ (рис. 24).
Рис. 24. Схема производства магния
Основным сырьём для получения магния является карналлит, магнезит, доломит, бишофит.
Производство магния включает в себя:
Производство титана.
Титан получают магниетермическим способом. Производство титана включает в себя:
Сырьём для получения титана являются титаномагнетитовые руды, из которых выделяют ильменитовый концентрат (TiO2, FeO, Fe2O3 и пустая порода). Название этот концентрат получил по наличию в нём минерала ильменита FeO… TiO2.
Ильменитовый концентрат плавят в смеси с древесным углём, антрацитом, где оксиды железа и титана восстанавливаются. Полученный титановый шлак подвергают хлорированию в специальных печах. Далее полученный четырёххлористый титан смешивают с чушковым магнием в реакторах (рис. 25) при температуре 950 – 1000 о С и происходит его восстановление. Получается пористая масса – губка.
Титановую губку плавят методом ВДП. Вакуум в печи предохраняет титан от окисления и способствует очистке его от примесей. Полученные слитки титана имеют дефекты, поэтому их вторично переплавляют, используя как расходуемые электроды. В результате этого чистота титана составляет 99,6 – 99,7%. После вторичного переплава слитки (рис. 26) используют для обработки давлением. На рис. 27 показано изделие полученное из титана.
Рис. 25. Реакторы для восстановления четырёххлористого титана