метанол в газовой промышленности для чего нужен

Геоэкология метанола, используемого в газовой промышленности

Рассмотрена геоэкология метанола, используемого в газовой промышленности в качестве ингибитора гидратообразования.

Рассмотрена геоэкология метанола, используемого в газовой промышленности в качестве ингибитора гидратообразования.

Приведены примеры и описаны риски загрязнения окружающей среды метанолом, а также его токсического действия на человека. Представлены гигиенические нормативы метанола для контроля загрязнения им окружающей среды. Охарактеризованы различные способы утилизации и очистки сточных вод и почв, содержащих метанол (сжигание, захоронение, ректификация, ультрафиолетовое облучение, каталитическое и микробиологическое воздействие), как решение проблемы риска загрязнения окружающей среды данным веществом.

Метанол (CH3OH) используется в газовой промышленности как ингибитор гидратообразования, то есть для борьбы с таким нежелательным явлением, как образование при определенных термобарических условиях из воды и низкомолекулярных газов так называемых газовых гидратов в виде твердых кристаллических соединений [1, 2].

Механизм действия метанола, относящегося к классу термодинамических ингибиторов гидратообразования, заключается в снижении активности воды в водном растворе, вследствие чего изменяются равновесные условия образования гидратов. Так, закачка метанола в призабойную зону скважины газогидратных месторождений вызывает не только разложение газовых гидратов на забое скважины, но и улучшает фильтрационные характеристики призабойной зоны, то есть участка пласта, примыкающего к стволу скважины. Кроме того, высокая адсорбционная способность метанола используется для удаления воды после гидростатических испытаний газопроводов, а также в низкотемпературных процессах очистки природного газа от углекислого газа (CO2), сероводорода (H2S) и других серосодержащих органических соединений.

Цель данной работы состояла в анализе, систематизации и обобщении информации, касающейся примеров и риска загрязнения окружающей среды метанолом, используемым в газовой промышленности, токсического его действия на человека, контроля загрязнения окружающей среды, способов утилизации и очистки сточных вод и почв, содержащих данное вещество.

Примеры загрязнения окружающей среды метанолом

Загрязнение окружающей среды метанолом происходит в результате его аварийных выбросов или разливов при производстве, транспортировке и применении данного вещества. При этом количество аварийных выбросов или разливов метанола или промышленных сточных вод, содержащих это вещество нельзя планировать, а избежать их на 100% практически невозможно. Так, недавно в Свердловской области на железнодорожной станции произошла утечка значительного количества метанола (850 л) из цистерны на пути [4]. Серия инцидентов, связанных с высоким загрязнением атмосферного воздуха метанолом, то есть до 10, 15 и 22 предельно допустимой концентрации (ПДК), была зарегистрирована в Тульской области 5. Высокое и экстремально высокое загрязнение метанолом речной воды, соответственно до 32 и 58 ПДК, было установлено в Вологодской области [5, 8]. В одном из городов Кемеровской области в воде скважин на территории химических предприятий был обнаружен метанол в концентрации, превышающей его ПДК, а в Архангельской области метанол был отнесен к числу приоритетных загрязнителей источников питьевой воды, требующих постоянного контроля [9, 10].

Риск загрязнения окружающей среды метанолом

Самый большой риск загрязнения окружающей среды метанолом представляет его транспортировка на газодобывающие предприятия. Известно, что транспортная схема обеспечения газодобывающих предприятий метанолом, существующая в настоящее время, например, в Надым-Пур-Тазовском нефтегазоносном регионе (Ямало-Ненецкий автономный округ, 67 ○ 15′ с.ш., 74 ○ 40′ в.д.) включает несколько этапов, а именно [3]: залив метанола в железнодорожные цистерны на заводе-изготовителе и их транспортировка на головную базу, перелив метанола из железнодорожных цистерн в стационарные емкости для хранения, подготовка метанола к использованию путем добавления красителя или одоранта, перелив метанола из стационарных емкостей в автомобильные цистерны и их транспортировка до базы метанола на газодобывающем предприятии, где осуществляется перелив метанола из автомобильных цистерн в стационарные емкости, затем перелив из стационарных емкостей в другие автомобильные цистерны и транспортировка метанола на конкретные объекты потребления.

Примером чрезвычайно высокого риска для водной среды является транспортировка метанола в короткий летний период навигации на грузовых судах по реке Обь и Тазовской губе (морскому заливу) на Юрхаровское газоконденсатное месторождение Надым-Пур-Тазовского нефтегазоносного региона [11, 12]. Как известно, река Обь и Тазовская губа относятся к водоемам высшей рыбохозяйственной категории, как местам нагула ценных пород осетровых и сиговых рыб.

Токсическое действие метанола на человека

Метанол является сильным, преимущественно нервным и сосудистым ядом с резко выраженным кумулятивным эффектом, то есть усиленным токсическим действием в результате его накопления в организме при кратных поступлениях [14]. Наибольшее количество метанола накапливается в печени и почках [15]. Установлено, что часть поступившего в организм метанола через несколько суток выделяется слизистой оболочкой в просвет желудка и затем снова всасывается. Метанол при пероральном попадании в организм человека вызывает циркуляторный коллапс, то есть острую сосудистую недостаточность, сопровождающуюся резким падением кровяного давления. Особую токсичность метанола связывают с образованием из него в организме формальдегида (НСОН) и муравьиной кислоты (НСООН):

CH3OH → HCOH → HCOOH

За счет образования именно этих веществ, а также медленного распада метанола обусловлена тяжесть интоксикации. При любом пути поступления метанола типичны поражения зрительного нерва и сетчатки глаза, отмечаемые как при острых, так и при хронических интоксикациях. Пары метанола сильно раздражают слизистые оболочки глаз и дыхательных путей.

Ранние симптомы хронической интоксикации метанолом проявляются в виде концентрического сужения границ цветного зрения, нарастающего со временем и атрофии зрительного нерва, то есть уменьшения его размеров, сопровождающегося нарушением или прекращением функции и отеком. У лиц с хронической интоксикацией метанола в производственных условиях возникает изменение белковообразовательной функции печени. Имеют место быстрая утомляемость, головная боль во второй половине дня, раздражительность, плаксивость и боль в правом подреберье. При малых концентрациях метанола отравление развивается постепенно и характеризуется раздражением слизистых оболочек, частыми заболеваниями дыхательных путей, головными болями, звоном в ушах, невритами и расстройствами зрения. Отравление организма при попадании на кожу метанола обычно происходит при одновременном вдыхании его паров. Поступление метанола в организм через кожу и дыхательные пути связано с особыми условиями, как обливом веществом поверхности тела (без проведения немедленной дегазации) и длительным пребыванием в атмосфере, содержащей метанол [15]. Для определения раннего негативного действия метанола представляется важным и необходимым определение данного вещества в биологических жидкостях организма (крови и моче), например, газохроматографическим методом.

Контроль загрязнения окружающей среды метанолом

Таблица 1. Гигиенические нормативы метанола для различных сред и человека

Предельно допустимая концентрация

В воздухе рабочей зоны

Максимальная разовая в воздухе населенных мест

Среднесуточная в воздухе населенных мест

В воде водных объектов

Предельно допустимый уровень

Однако считается, что определение метанола в биологических средах человека (крови и моче) более актуально, чем определение данного вещества в атмосферном воздухе, поскольку разовая непродолжительная проба в зоне дыхания может неадекватно отражать общее воздействие метанола на организм [15].

Способы утилизации и очистки сточных вод и почв, содержащих метанол

Как известно сточные воды, образуемые на предприятиях газовой промышленности, наряду с метанолом содержат ряд других специфических компонентов (углеводороды, фенолы, гликоли, сероводород и другие вещества) [18]. При этом способ утилизации подобного рода сточных вод, например, сжиганием на так называемых газофакельных установках не является экологически безопасным, так как опасные продукты сгорания компонентов сточных вод поступают в атмосферный воздух, затем оседают на почву и открытые водные объекты.

К другому способу утилизации сточных вод, широко практикуемому в газовой промышленности, относится их подземное захоронение. Оно осуществляется путем закачки сточных вод в глубокие, надежно изолированные водоносные горизонты, не содержащие пресных, бальнеологических, минеральных и термальных вод. Подземное захоронение сточных вод в область депрессионной воронки в водонапорной системе разрабатываемого месторождения природного газа может быть осуществлено при невозможности очистки сточных вод от метанола и других компонентов до требуемых ПДК. Так, например, утилизация не поддающихся очистке сточных вод Астраханского газоконденсатного комплекса, производится путем их закачивания через скважины в пласт триасово-нижнемеловых отложений на глубину около 2000 м [19].

Ниже описываются способы, ориентированные на очистку сточных вод с преобладающим содержанием метанола в их составе, так называемой метанолсодержащей воды. Так, в работе [20] представлена технологическая схема извлечения метанола из сточных вод предприятия химической промышленности на основе процесса ректификации, путем испарения жидкости и раздельной конденсации паров различных компонентов. При этом использовался метод периодической ректификации, который в отличие от непрерывного процесса позволяет разделить смесь и извлечь метанол в одной ректификационной колонне вместо двух.

В работе [22] предложена технологическая схема извлечения метанола из производственных сточных вод газоконденсатных месторождений, заключающаяся в регенерации данного вещества ректификацией с последующим глубоким каталитическим окислением его остаточных количеств в кубовом остатке (неиспарившейся жидкости). При этом 100% окисление метанола в кубовом остатке в концентрации до 1,5% достигается при использовании медно-хромо-магниевого и хромо-магниевого катализатора на носителе из оксида алюминия (Al2O3). Продолжительность контакта метанолсодержащей воды с катализатором не менее 0,9 секунд при температуре не ниже 450 ○ С. Между тем исследования [23] показали также возможность 100% очистки сточных вод от метанола на медно-хромо-цинковом катализаторе при 250 ○ С с начальным содержанием вещества до 5%.

В другом способе очистки не только метанолсодержащей воды, но и почвы от метанола используются микроорганизмы. Так, в работах [24, 25] даются практические рекомендации по очистке указанных сред с помощью биопрепаратов в виде высушенных активных биомасс метилотрофных бактерий (Acinetobacter calcoaceticus и Methylomonas methanica), выделенных из озерной воды и почвы. Очистка загрязненных сред от метанола происходит путем микробиологической трансформации (окисления) данного вещества через формальдегид и муравьиную кислоту до диоксида углерода и воды:

Между тем для снижения риска попадания метанола с загрязненной почвы в поверхностные и подземные воды возникает необходимость ее оперативной очистки, которую также проводят с помощью вышеуказанных биопрепаратов [24]. Так, при поверхностном (0-5 см) и подповерхностном (5-30 см) загрязнении почвы метанолом ее обрабатывают специально приготовленной суспензией биопрепарата (в растворе минеральных удобрений). При этом до и после обработки биопрепаратом верхние слои почвенного профиля подвергают рыхлению. При глубинном загрязнении почвенного профиля метанолом (до 100 см), его слой полностью экскавируют и складируют в виде бурта на специально подготовленную площадку с водонепроницаемым основанием и системой перфорированных труб, проходящих через толщу бурта и обеспечивающих интенсивную аэрацию с помощью компрессоров. Бурт обрабатывают биопрепаратом, периодически подвергают рыхлению и после очистки экскавированный слой возвращают на место выемки. Для очистки нижних слоев почвенного профиля прокладывают скважины на всю глубину загрязнения вплоть до зеркала грунтовых вод, в которые через перфорированные трубы прокачивают суспензию биопрепарата и воздух.

1. Российская газовая энциклопедия. М.: Большая Российская энциклопедия, 2004. 527 с.

2. Истомин В.А., Минигулов Р.М., Грицишин Д.Н., Квон В.Г. Технологии предупреждения гидратообразования в промысловых системах: проблемы и перспективы // Газохимия. 2009. № 6. С. 32-40.

3. Грунвальд А.В. Рост потребления метанола в газовой промышленности России и геоэкологические риски, возникающие при его использовании в качестве ингибитора гидратообразования // Нефтегазовое дело. 2007. 25 с.

4. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в марте 2014 г. // Метеорология и гидрология. 2014. № 6. С. 103-110.

5. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в июле 2016 г. // Метеорология и гидрология. 2016. № 10. С. 103-110.

6. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в июне 2016 г. // Метеорология и гидрология. 2016. № 9. С. 97-104.

7. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в мае 2016 г. // Метеорология и гидрология. 2016. № 8. С. 100-106.

8. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в августе 2016 г. // Метеорология и гидрология. 2016. № 11. С. 96-103.

9. Эльпинер Л.И. Современные медико-экологические аспекты учения о подземных водах // Гигиена и санитария. 2015. № 6. C. 39-46.

10. Унгуряну Т.Н. Риск для здоровья населения при комплексном действии веществ, загрязняющих питьевую воду // Экология человека. 2011. № 3. С. 14-20.

11. Юнусов Р.Р., Шевкунов С.Н., Дедовец С.А., Ушаков С.Н., Лятс К.Г., Самойлов А.П. Малотоннажные установки по производству метанола в газодобывающих районах Крайнего Севера // Газохимия. 2008. № 1. С. 58-61.

13. Ладыгин К.В., Цукерман М.Я., Стомпель С.И. Метанол в газодобыче: снижение экологических рисков // Экология производства. 2014. № 4. С. 47-49.

14. Андреев О.П., Башкин В.Н., Галиулин Р.В., Арабский А.К., Маклюк О.В. Решение проблемы геоэкологических рисков в газовой промышленности. Обзорная информация. М.: Газпром ВНИИГАЗ, 2011. 78 с.

15. Малютина Н.Н., Тараненко Л.А. Патофизиологические и клинические аспекты воздействия метанола и формальдегида на организм человека // Современные проблемы науки и образования. 2014. № 2. 11 с.

16. Бойко О.В., Ахминеева А.Х., Бойко В.И., Гудинская Н.И. Влияние Астраханского газоперерабатывающего завода на загрязнение воздуха производственных помещений и территории // Гигиена и санитария. 2016. № 2. С. 167-171.

17. Тараненко Н.А., Мещакова Н.М. Санитарно-гигиенические аспекты мониторинга за состоянием воздуха рабочей зоны химических производств по получению метанола и метиламинов // Международный журнал прикладных и фундаментальных исследований. 2015. № 8. С. 812-815.

18. Акопова Г.С., Ильченко В.П., Попадько Н.В. Производственные сточные воды газовой отрасли: источники образования, состав, очистка и утилизация // Газовая промышленность. 2003. № 6. С. 76-78.

19. Абуталиева И.Р., Исакова В.В. Освоение газоконденсатных месторождений как фактор изменения геосистем Астраханского Прикаспия // Вестник Астраханского государственного технического университета. 2010. № 2. С. 7-12.

20. Пухлий В.А., Журавлев А.А., Померанская А.К., Пухлий П.В. Очистка сточных вод от метанола и ацетона // Энергетические установки и технологии. 2016. Т. 2. № 2. С. 68-77.

22. Бренчугина М.В., Буйновский А.С., Исмагилов З.Р., Кузнецов В.В. Разработка технологии очистки производственных вод газоконденсатных месторождений от метанола // Известия Томского политехнического университета. 2007. Т. 311. № 3. С. 64-68.

23. Шаркина В.И., Серегина Л.К., Щанкина В.Г., Фалькевич Г.С., Ростанин Н.Н. Очистка водометанольной фракции от метанола на промышленном катализаторе НТК-4 // Катализ в промышленности. 2012. № 1. С. 61-64.

24. Мурзаков Б.Г., Акопова Г.С., Маркина П.А. Очистка метанолсодержащих вод с помощью биологических препаратов // Газовая промышленность. 2005. № 12. С. 58-60.

25. Мурзаков Б.Г., Акопова Г.С., Маркина П.А. Выделение метилотрофных бактерий из микробиоценоза метанолсодержащих вод // Газовая промышленность. 2006. № 3. С. 83-85.

Announcement in English

The geoecology of methanol used in the gas industry as hydrate formation inhibitor is considered. Examples are given and risks of environmental pollution by methanol, and also its toxic action on the human are described. Hygienic standards of methanol for control of environmental pollution by him are presented. Various methods of utilization and cleaning of sewage and soils contained methanol (burning, burial, rectification, ultra-violet irradiation, catalytic and microbiological influence) as a solution of the problem of environmental pollution risk by this substance are characterized.

Автор: Р.В. Галиулин, Р.А. Галиулина, В.Н. Башкин,

Источник

Метанол

Метанол – один из наиболее важных по значению крупнотоннажных продуктов химической промышленности.

На сегодняшний день этот рынок напрямую зависит от мировой конъюнктуры, которая пока остается весьма благоприятной ввиду относительной дешевизны российского природного газа и электроэнергии.

В настоящее время РФ является одним из наиболее крупных игроков на мировом рынке метанола, занимая 4 е место по объемам его выпуска после.
Несмотря на экспортную направленность, многие российские производители метанола в последние годы стали больше внимания уделять глубине переработки продукта.
Переработка метанола в последующие продукты экономически более выгодна, чем продажа его в чистом виде.

Побочные реакции при производстве обуславливают бесполезный расход синтез-газа и удорожают очистку метанола.

Степень превращения СО за проход составляет 15-50%, при этом в контактных газах содержится только –4% метанола.

С целью возможно более полной переработки синтез-газа необходимо его возвращение в цикл после выделения метанола и воды.
При циркуляции в синтез-газе накапливаются инертные примеси, что приводит к снижению давления в системе и повлечет за собой снижение выхода и скорости процесса.
Поэтому концентрацию инертных примесей регулируют частичной отдувкой циркуляционного газа. Отдувка проводится с таким расчетом, чтобы количество инертов, поступающих со свежем синтез-газом, было равно количеству инертов, удаляемых с отдувкой.

Источник

Метанол в газовой промышленности для чего нужен

Метано́л (метиловый спирт, древесный спирт, карбинол, метилгидрат, гидроксид метила) — CH3OH, простейший одноатомный спирт, бесцветная ядовитая жидкость. Метанол — это первый представитель гомологического ряда одноатомных спиртов.

С воздухом в объёмных концентрациях 6,72—36,5 % образует взрывоопасные смеси (температура вспышки 15,6 °C). Метанол смешивается в любых соотношениях с водой и большинством органических растворителей.

Получение

До 1960-х годов метанол синтезировали только на цинкхромовом катализаторе при температуре 300—400 °C и давлении 25—40 МПа (= 250—400 Бар = 254,9—407,9 кгс/см²). Впоследствии распространения получил синтез метанола на медьсодержащих катализаторах (медьцинкалюмохромовом, медь-цинкалюминиевом или др.) при 200—300 °C и давлении 4—15 МПа (= 40—150 Бар = 40,79—153 кгс/см²).

Современный промышленный метод получения — каталитический синтез из оксида углерода(II)(CO) иводорода(2H2) при следующих условиях:

температура — 250 °C,

давление — 7МПа (= 70 атм= 70 Бар = 71,38 кгс/см²),

катализатор— смесь ZnO (оксид цинка) и CuO (оксид меди(II)):

До промышленного освоения каталитического способа получения метанол получали при сухой перегонке дерева (отсюда его название «древесный спирт»). В данное время этот способ имеет второстепенное значение.

Также известны схемы использования с этой целью отходов нефтепереработки, коксующихся углей.

Молекулярная формула — CH4O или CH3—OH, а структурная: метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нуженВ настоящее время метиловый спирт получают синтетическим способом из монооксида углерода и водорода при температуре 300—400 °C и давления 300—500 атм в присутствии катализатора — смесиоксидов цинка, хрома и др. Сырьем для синтеза метанола служитсинтез-газ(CO + H2), обогащенный водородом: :CO+ 2H2 → CH3OH [1]

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Крупнейшим производителем метанола в России является ОАО «Метафракс» в Губахе.

На конец 2013 года германский концерн «GELSENCHEM Chemical Products GmbH» предлагает метанол 98,5% по цене 520euro за 10 тонн и это цена с доставкой по Германии.

Применение

В органической химии метанол используется в качестве растворителя.

Метанол используется в газовой промышленности для борьбы с образованием гидратов (из-за низкой температуры замерзания и хорошей растворимости). В органическом синтезе метанол применяют для выпуска формальдегида, формалина, уксусной кислоты и ряда эфиров (например, МТБЭ и ДМЭ), изопрена и др.

Наибольшее его количество идёт на производство формальдегида, который используется для производства карбамидоформальдегидных и фенолформальдегидных смол. Значительные количества CH3OH используют в лакокрасочной промышленности для изготовления растворителей при производстве лаков. Кроме того, его применяют (ограниченно из-за гигроскопичности и отслаивания) как добавку к жидкому топливу для двигателей внутреннего сгорания. Используется в топливных элементах.

Благодаря высокому октановому числу, что позволяет увеличить степень сжатия до 16 [ источник не указан 380 дней ] и большей на 20 % энергетической мощностью заряда на основе метанола и воздуха, метанол используется для заправки гоночных мотоциклов и автомобилей. Метанол горит в воздушной среде, и при его окислении образуется двуокись углерода и вода:

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Для получения биодизеля растительное масло переэтерифицируется метанолом при температуре 60 °C и нормальном давлении приблизительно так: 1 т масла + 200 кг метанола + гидроксид калия или натрия.

Во многих странах метанол применяется в качестве денатурирующей добавки к этанолу при производстве парфюмерии. В России использование метанола в потребительских товарах запрещено.

При добыче газа гидраты могут образовываться в стволах скважин, промысловых коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли).

Работа топливных элементов основана на реакции окисления метанола на катализаторе в диоксид углерода. Вода выделяется на катоде. Протоны (H + ) проходят через протонообменную мембрану к катоду где они реагируют с кислородом и образуют воду. Электроны проходят через внешнюю цепь от анода к катоду снабжая энергией внешнюю нагрузку.

Получение муравьиной кислоты окислением метанола:

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Получение диметилового эфира дегидратацией метанола при 300—400 °C и 2-3 МПа в присутствии гетерогенных катализаторов — алюмосиликатов — степень превращения метанола в диметиловый эфир — 60 % или цеолитов — селективность процесса близка к 100 %. Диметиловый эфир (C2H6O) — экологически чистое топливо без содержания серы, содержаниеоксидов азота в выхлопных газах на 90 % меньше, чем у бензина. Цетановое число диметилового дизеля более 55, при том что у классического нефтяного 38-53.

Метил-трет-бутиловый эфир получается при взаимодействии метанола с изобутиленом в присутствии кислых катализаторов (например, ионообменных смол). метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Метил-трет-бутиловый эфир (C5H12O) применяется в качестве добавки к моторным топливам, повышающей октановое число бензинов (антидетонатор). Максимальное законодательное содержание МТБЭ в бензинах Европейского союза — 15 %, в Польше — 5 %. В России в среднем составе бензинов содержание МТБЭ составляет до 12 % для АИ92 и до 15 % для АИ95, АИ98.

В отличие от углеводородов, кислородсодержащие органические вещества имеют комплекс атомов, называемый функциональной группой. Метанол – это предельный спирт, имеющий в составе своей молекулы гидроксильную группу. Она и определяет основные характеристики данного соединения. В нашей статье мы рассмотрим способы получения метилового спирта, важнейшие химические реакции и применение метанола.

Строение молекулы

Для того чтобы выяснить строение метилового спирта, нужно вспомнить, какой вид имеет молекула простейшего предельного углеводорода – метана. Она выражается формулой CH4 и содержит один атом карбона, связанный с помощью простых сигма-связей с атомами водорода.

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Если один из них заместить на гидроксильную группу –OH, получим формулу CH3OH. Это метанол. Валентный угол, построенный направлением связи C-O-H, составляет примерно 110⁰, поэтому молекулы одноатомных спиртов имеют угловую форму. Вследствие того, что электроотрицательность кислорода (3,5 эВ) больше, чем карбона (2,5 эВ), связь кислород – углерод очень поляризована, а гидроксогруппа играет роль заместителя, имеющего отрицательный индуктивный эффект. Таким образом, метанол – это спирт, у которого дипольный момент равен 1,69D.

Номенклатура

Рассмотрим три способа образования названия вещества, имеющего формулу CH3OH. Исторически оно образуется от названия углеводородного радикала, к которому присоединилась гидроксильная группа. Радикал CH3 — это метил, поэтому спирт CH3OH именуют метиловым. По Женевской номенклатуре, к названию соответствующего углеводорода – алкана – прибавляют суффикс –ол. Соединение будет называться метанолом. Это название наиболее распространено и используется достаточно часто. В рациональной номенклатуре рассматриваемое нами соединение называется карбинолом.

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Физические свойства

Получение метанола

Гидролиз соответствующих галогеноалкилов в присутствии гидроксидов активных металлов, например, щелочных или щелочноземельных, и при нагревании – это распространенный метод получения карбинола. В качестве исходных веществ берут хлор- или бромметан, результатом реакции будет замещение атома галогена функциональной группой –OH и получение метанола.

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Металлорганический синтез

Если на органические вещества с карбонильной группой в составе молекул подействовать магнийорганическими соединениями, можно получить одноатомные спирты. Металлоорганические реагенты добывают при взаимодействии магниевых металлических стружек и бромсодержащих производных алканов в среде сухого диэтилового эфира. Из муравьиного альдегида данной реакцией можно получить не только метанол, применение которого ограничено, но и другие первичные предельные спирты.

Химическая характеристика

У карбинола нет ярко выраженных свойств кислот или оснований, к тому же водный раствор вещества не действует на индикаторы. Типичные реакции метанола – это взаимодействие с активными металлами и карбоновыми кислотами. В первом случае образуются алкоголяты металлов, во втором – сложные эфиры. Например, натрий вытесняет атомы водорода в функциональной гидроксильной группе спирта:

Взаимодействие между метиловым спиртом и уксусной кислотой приводит к образованию метилацетата, или метилового эфира уксусной кислоты:

Приведенная выше реакция именуется этерификацией и имеет важное практическое значение.

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Окисление спиртов

Реакции метанола, приводящие к получению альдегидов, рассмотрим на примере его взаимодействия с оксидом меди. Если в раствор метанола опустить раскаленную проволоку из меди, покрытую оксидом, то ощущается особый неприятный запах образовавшегося формальдегида. А тусклая поверхность проволоки становится яркой и блестящей вследствие восстановления чистой меди.

Дегидратация

При нагревании и при наличии гигроскопических веществ от молекул спиртов происходит отщепление частиц воды. В продуктах можно обнаружить непредельные углеводороды ряда этилена. В условиях высокой концентрации воды и при пониженной температуре можно получить простые эфиры. Так, из метанола можно добыть диметиловый эфир.

Применение метилового спирта

Метиловый спирт используют в качестве ингибитора гидратов, образующихся в газовых трубопроводах, так как важные свойства метанола — это хорошая растворимость в воде и низкая температура замерзания. Основной объем метилового спирта используется в производстве фенолформальдегидных смол. Высокое октановое число, характерное для карбинола, позволяет применять его в качестве экологически чистого топлива для автомобилей. В лакокрасочной промышленности карбинол используют в качестве растворителя.

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Влияние метанола на организм человека

Древесный спирт абсолютно непригоден для использования в качестве алкогольного напитка, так как является сильнейшим токсическим веществом. Попав в желудочно-кишечный тракт, он начинает окисляться до муравьиной кислоты и муравьиного альдегида. Продукты окисления поражают зрительные нервы и сетчатку глаза, содержащую рецепторы. Наступает слепота. Муравьиная кислота, обладающая высокой кумулятивной способностью, разносится кровью к печени и почкам, разрушая эти жизненно важные органы. В результате отравления метанолом имеет место летальный исход, так как способы очистки крови от метаболитов оказываются неэффективными.

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

В нашей статье мы ознакомились со свойствами, применением и способами получения метанола.

Формула СН3ОН — метиловый спирт, древесный спирт, карбанол.

Признаки отравления метанолом:

v рвота, раздражение слизистых оболочек;

v мелькание в глазах;

v в тяжелых случаях необратимая слепота,смерть.

Метанол применяется для предотвращения или ликвидации кристалогидратных пробок в ГП. Его добавляют в состав ингибитора коррозии металла и для обработки призабойных зон газовых скважин подземного хранения газа.

Работающие с метанолом должны пройти обучение по мерам безопасности при работе с ним. Любые работы с метанолом проводятся только под руководством ИТР.

Оказание первой помощи при отравлении метанолом.

Для предотвращения употребления метанола внутрь в него добавляют одорант для придания запаха тухлых яиц, чернила, чтобы испортить цвет, и керосин, чтобы вызвать рвоту при случайном употреблении метанола.

Первая помощь при отравлении метанолом заключается в том, чтобы выпить водку, спирт или самогон в количестве 100…150 грамм («Медицинская энциклопедия», стр.417). Спирт или водка предотвращает распад молекул метанола в организме человека на более ядовитые компоненты, т.е. является хорошим противоядием. Вызвать скорую помощь. До прибытия скорой помощи у пострадавшего вызвать рвоту, если он в сознании. Если он без сознания, то уложить на живод без подушки, голову повернуть на бок в сторону. Это для того, чтобы пострадавший не захлебнулся рвотными массами. В медицинских учреждениях пострадавшим через капельницу вводят спирт.

Порядок выполнения первичного пуска газа в жилые дома. Последовательность действий. Оформление документации.

Основанием для пуска газа является акт законченного строительством объекта, подписанный госкомиссией. Работа газоопасная, выполняется по наряду-допуску под руководством ИТР. В состав бригады включаются представители строительно-монтажной организации вместе с прорабом, которые будут устранять утечки, негерметичность газооборудования, выявленные при контрольной опрессовке воздухом. В бригаду включаются представители ЖЭУ, которые обязаны объявить жителям о пуске газа и обеспечить наличие всех абонентов в квартирах или иметь ключи от всех квартир, жителей которых нет.

Представители ЖЭУ или СМУ доукомплектовывают газовые приборы в слусае некомплектности их.

Все абоненты заранее до пуска газа, начиная с 12 лет обязаны пройти инструктаж в техническом кабинете горгаза, получить абонентскую книжку, написать расписку о том, что они, абоненты обязуются выполнять эти требования. Кроме того они расписываются в специальном журнале за инструктаж.

Горгаз не будет производить пуск газа в жилой дом или подъезд пока все абоненты не пройдут инструктаж.

Газ дошедший до жилого дома должен быть отключен от внутренней разводки дома и это все должно быть заглушено пробками, т.е. соединения наружного ГП с внутренним ГП – нет.

Газ в наружный ГП до жилого дома пускается в том же порядке, как мы описывали его в теме «пуск газа в ГРП и котельную». Предположим, что газ до жилого дома доведен, кран закрыт и в него ввернута заглушка. Проводится внешний осмотр всей внутренней системы газоснабжения подъезда или жилого дома. Для этого бригадир сам лично обходит все квартиры и проверяет укомплектованность газовых приборов, подключение газопроводов (ГП) к опускам. Опуск – это ГП, который подводит газ к плите. На нем устанавливается кран. Краны на опусках должны быть закрыты. Попутно проверяют наличие вентиляции в кухне, наличие фрамуг и форточек.

Проводится контрольная опрессовка внутреннего ГП и приборов воздухом давлением 500 мм вд.ст. Падение давления – 20 мм вд.ст. за 5 минут. Для этого к плите на самом верхнем этаже подключают велосипедный насос, U-образный стеклянный манометр, создают давление и ищут утечки мыльным раствором.

Опрессовка внетреннего ГП до закрытых кранов на опусках перед плитами. Проводится контрольная опрессовка всех плит, всех приборов по всем квартирам. После этого мастер, бригадир снова проходит и лично сам проверяет, чтобы все краны перед приборами на опусках были закрыты, а также закрыты на газовой плите.

Подсоединяется наружный ГП к внутреннему ГП жилого дома. В самой верхней квартире, к крайнему кранику плиты подключаем продувочный шланг, конец которого выбрасываем в форточку и закрепляем к окну, чтобы шланг случайно не вывалился в кухню. Форточку прикрываем, чтобы ветром не задуло газовоздушное облако в квартиру.

Двери кухни закрываем. После этого мастер выходит на улицу и убеждается, что все окна, форточки и двери в подъездах закрыты.

Из квартиры верхнего этажа, из которой будет продувка, слесарь дает сигнал (стучит по трубе), чтобы бригада стоящая внизу у вводного крана в жилой дом открыла его и подала газ. Как только кран открыли, сборку наружного ГП с внутренним обмыливают. Идет продувка газом для вытеснения воздуха. Пяти минут достаточно, чтобы продуть пятиэтажный подъезд. Окончание продувки определяют методом сжигания проб или газоанализатором. Содержание кислорода в продувочном газе не должно превышать 1%.

Закрывают кран на опуске, убирают с плиты продувочную сборку, собирают плиту, разжигают ее и приглашают абонентов ранее удаленных в другие комнаты, инструктируют, производят практический показ. Абонент расписывается в специальной вкдомости у мастера, бригадира. В абонентской книжке делают запись о дате пуска газоприбора. Далее по всем квартирам бригада производит продувку и пуск аналогично первой квартире. Перерыва между контрольной опрессовкой и пуском газа быть не должно.

Закрываем наряд-допуск, сдаем его и расписываемся в журнале регистрации нарядов о проделанной работе.

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

метанол в газовой промышленности для чего нужен. Смотреть фото метанол в газовой промышленности для чего нужен. Смотреть картинку метанол в газовой промышленности для чего нужен. Картинка про метанол в газовой промышленности для чего нужен. Фото метанол в газовой промышленности для чего нужен

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *