межосевое расстояние редуктора что это
Технические характеристики редуктора
Подписка на рассылку
Для того, что бы правильно выбрать редуктор для применения в составе привода необходимо знать его основные параметры:
Рассмотрим эти параметры более подробно.
Тип редуктора зависит от варианта применяемой передачи. Основные типы передающих ступеней это цилиндрические, червячные, конические, планетарные или волновые. Редуктор может состоять как из одной, двух и более ступеней одного вида. Так же используются редукторы, совмещающие различные типы ступеней, например червячно-цилиндрический или планетарно-червячный.
Существуют еще несколько видов передач, таких как червячные-глобоидные, спироидные, цевочные и другие. Но они являются дальнейшим развитием уже указанных основных типов передач.
Выбор редуктора зависит от его назначения, ограничений по массе, крутящему моменту, габаритам, компоновке элементов привода.
Главный параметр – геометрическая характеристика, которая определяет массогабаритные и энергосиловые параметры. Зависит от типа редуктора и определяется в соответствии с ГОСТ 31592-2012.
В цилиндрическом редукторе это расстояние между осями тихоходной и соседней ступеней (рис. 1-размер AwT);
Передаточное отношение – показывает, во сколько раз изменяется крутящий момент и частота вращения на тихоходном (выходном) валу редуктора, по сравнению с входным валом. Безразмерная величина.
Это ключевой параметр работы редуктора, равный произведению всех передаточных чисел его ступеней. Чем их больше, тем больше будет общее передаточное отношение редуктора.
В таблице указаны нормативные показатели передаточных чисел для одной степени разных типов:
Монтажное исполнение так же может быть различным – сверху, сбоку, спереди, сзади. Более наглядно это изображено на рисунке:
Климатическое исполнение – этот параметр обязателен не только для редукторов, но и в целом для любого промышленного оборудования или изделия. Показывает, в каких климатических условиях (температура, влажность, осадки и т.д.) допустима эксплуатация, определяется ГОСТ 15150-69.
В заключение приведем пример обозначения редуктора:
Конструкция редукторов
КЛАССИФИКАЦИЯ, ОСНОВНЫЕ ПАРАМЕТРЫ И КИНЕМАТИЧЕСКИЕ СХЕМЫ
Редукторы служат для уменьшения числа оборотов и увеличения крутящих моментов и состоят из ряда последовательно соединенных зубчатых и червячных передач, собранных в отдельном жестком корпусе. Размещение передач в корпусе дает возможность расположить опоры валов со строго выдержанной соосностью и точными межосевыми расстояниями, защитить передачи от попадания грязи и создать условия для эффективной смазки.
Для увеличения числа оборотов применяются мультипликаторы. В настоящей работе рассматриваются конструкции и расчет только редукторов, однако конструкция и расчет основных узлов мультипликатора аналогичны расчету редуктора.
Редукторы могут служить для передачи вращения между параллельными, пересекающимися и перекрещивающимися валами. Для передачи вращения между параллельными валами служат редукторы с цилиндрическими зубчатыми передачами — так называемые цилиндрические редукторы. В тех случаях, когда необходимо передать вращение между пересекающимися валами, используются конические зубчатые передачи (конические редукторы). Для передачи вращения между перекрещивающимися валами в редукторах применяются червячные передачи (с цилиндрическим и глобоидным червяком, спироидные, тороидные), зубчато-винтовые цилиндрические передачи и винтовые конические зубчатые колеса (гипоидные).
Редукторы, состоящие только из одной передачи (одноступенчатые), применяются редко. Большее распространение получили двух-, трех- и многоступенчатые редукторы, причем они могут состоять из однотипных передач и быть комбинированными, т. е. состоять из передач разного типа (цилиндро-конические, червячно-цилиндрические редукторы и др.).
Общее передаточное отношение редуктора зависит от числа ступеней и типа передач и может доходить до 100 тыс.По количеству возможных скоростей вращения выходного вала редукторы можно разделить на односкоростные с постоянным передаточным отношением, двухскоростные и многоскоростные с изменяющимся передаточным отношением.
Конструктивно редукторы выполняются как самостоятельный узел, который устанавливается на общей раме с двигателем и другими узлами машины, или в виде встроенной конструкции, в которой редуктор объединяется с другими узлами в одном корпусе или имеет фланцевое соединение.
Редукторы выпускаются общего назначения с определенными параметрами, ограниченными гостами и нормалями, для использования на различных машинах и специального назначения, к которым предъявляются специфические требования эксплуатации и режима работы машины.
Основное количество цилиндрических и конических редукторов выпускается с эвольвентным профилем зубьев зубчатых колес.
Рис. 1. Типы зубчатых цилиндрических передач.
В червячных редукторах могут применяться передачи с цилиндрическими (Рис. 3,а) и глобоидными (Рис. 3,б) червяками, спироидные (Рис. 3,в), тороидно-дисковые (Рис. 3,г) и тороидные (Рис. 3,д) передачи внутреннего зацепления.
Все эти червячные передачи теоретически могут иметь любой угол между осями, но распространение получили исключительно передачи с взаимно-перпендикулярными осями.
Червячные передачи относятся к типу зубчато-винтовых с линейным контактом зубьев (в отличие от винтовых зубчатых передач).
Основными преимуществами червячных редукторов перед зубчатыми является высокое передаточное отношение при меньших габаритах редуктора, большая плавность и бесшумность в работе. Плавность работы червячной передачи объясняется хорошей прирабатываемостью червячной пары.
Одной из особенностей червячной передачи является самоторможение при изменении направления передачи мощности через редуктор, что очень важно при работе ряда машин, особенно грузоподъемных. Поэтому в редукторах некоторых машин используют самотормозящие червячные передачи, хотя принципиально можно было бы обойтись и без них.
Основной недостаток червячных передач — низкий коэффициент полезного действия вследствие больших потерь на трение скольжения в зацеплении, которые могут доходить до 70%. При этом выделяется большое количество тепла и происходит быстрый нагрев редукторов.
Коэффициент трения сильно зависит от скорости скольжения, что связано с условиями образования масляных клиньев в зацеплении. С увеличением скорости скольжения резко падает коэффициент трения и, следовательно, возрастает коэффициент полезного действия передачи. Поэтому, с этой точки зрения, целесообразно применение червячных передач на быстроходных валах. Некоторые значения коэффициента трения между стальным червяком и колесом из оловянистой бронзы для различных значений скорости скольжения приведены в табл. 1.
Особенно чувствуются большие потери при увеличении передаваемой мощности. Поэтому червячные редукторы применяются чаще всего для передачи мощностей от долей киловатт до 50 кВт.
Цилиндрические редукторы
Цилиндрические редукторы являются наиболее простыми и наиболее распространенными в машиностроении и применяются для передачи вращения между параллельными или соосными валами. Валы зубчатых колес редукторов могут быть горизонтальными и все лежать в горизонтальной и в вертикальной плоскостях. В последнем случае редуктор представляет собой вертикальную конструкцию с валами, расположенными один над другим. Возможна также конструкция редуктора с вертикальными валами.
Рис. 4. Схемы одноступенчатого (а) и двухступенчатого (б) редукторов с одним и тем же передаточным отношением
Общее передаточное отношение цилиндрических редукторов зависит от числа ступеней передач.
Передаточное отношение одной пары зубчатых колес может доходить до 25, однако в одноступенчатых редукторах передаточное отношение не выбирается более 10. При большем передаточном отношении, исходя из условий минимального веса и габаритов редуктора, а также допустимых деформаций быстроходных валов, выбирают двухступенчатые редукторы. Это объясняется тем, что при большом передаточном отношении зубчатой пары габариты редуктора в основном определяются величиной последнего зубчатого колеса. Поэтому, если габариты редуктора имеют решающее значение, рационально применить большее число ступеней, тем самым
уменьшив последнее зубчатое колесо и, следовательно, габариты редуктора (Рис. 4).
Двухступенчатые редукторы могут иметь общее передаточное отношение 10—60.
При передаточном отношении 60—400 применяются трехступенчатые, а при передаточном отношении 400—1800—четырехступепча-тые редукторы.
Цилиндрические передачи в редукторах могут применяться в довольно широком диапазоне окружных скоростей, величины которых зависят от точности изготовления зубчатых колес. Допуски па цилиндрические передачи регламентирует ГОСТ 1643-56. Стандарт распространяется на цилиндрические зубчатые колеса с внешними и внутренними прямыми, косыми и шевронными зубьями с диаметром по делительной окружности до 5000 мм и модулями от 1 до 50 мм.
Установлено 12 степеней точности в порядке убывания точности, причем на 1-, 2- и 12-ю степени допуск не предусматривается. Это объясняется тем, что первые две степени точности предполагается использовать в будущем, при дальнейшем развитии техники, а 12-я степень необходима при распространении стандартов на зубчатые колеса, не подвергающиеся механической обработке.
Наибольшее распространение получили 6-, 7-, 8- и 9-я степени точности передач. Значения окружных скоростей, рекомендуемые для зубчатых колес различной степени точности, и область их применения приведены в табл. 2.
Хотя максимальные окружные скорости прямозубых колес могут доходить до 15 м/сек, наиболее часто применяются скорости до 5 м/сек. Одним из достоинств прямозубой передачи является отсутствие осевых усилий.
Косозубые и шевронные зубчатые колеса в зависимости от качества изготовления могут применяться при окружных скоростях до 30 м/сек. Следует указать, что в последнее время особенно широкое распространение в редукторах получили косозубые передачи даже при малых окружных скоростях. Это объясняется их некоторыми преимуществами перед прямозубыми.
В косозубых передачах одновременно в зацеплении находится несколько зубьев, передача вращения происходит более плавно, уменьшаются динамические нагрузки, возникающие вследствие неточности изготовления колес.
Кроме того, в ряде случаев редукторы с косозубыми зубчатыми колесами имеют наименьший весовой показатель (отношение веса редуктора к крутящему моменту на тихоходном валу). В то же время изготовление косозубых колес не требует специального оборудования и оснастки.
Одним из недостатков косозубых передач является наличие осевого усилия, что вызывает необходимость усиления подшипниковых узлов и вала. Поэтому при больших осевых усилиях при передаче больших мощностей рационально применение более сложных шевронных передач, в которых осевые усилия скомпенсированы. Аналогично шевронным будут работать две параллельные косозубые передачи с разным направлением угла спирали зуба. Такие передачи, кроме перечисленных преимуществ, характерных для косозубых передач, создают равномерную нагрузку на опоры валов ввиду симметричного расположения колес на валу, что важно при больших сильно разнящихся величинах реакций в опорах.
Иногда в цилиндрических редукторах могут применяться зубчатые передачи с внутренним зацеплением. По сравнению с передачами наружного зацепления они имеют во много раз меньшее относительное скольжение рабочих поверхностей зубьев, поскольку относительная скорость слагается из разности абсолютных скоростей, меньшее удельное давление между рабочими поверхностями зубьев, так как контакт чаще всего происходит между вогнутой и выпуклой поверхностями зубьев и меньшие размеры при сравнительно большом передаточном отношении и малом межцентровом расстоянии. Однако зубчатые передачи с внутренним зацеплением не получили большого распространения, поскольку они более сложны в изготовлении и при их применении не обеспечивается достаточная жесткость валов вследствие консольного крепления колеса и шестерни. (Это указание не относится к редукторам некоторых специальных машин, например горных, где особое значение имеет сокращение габаритов).
Кинематические схемы некоторых наиболее распространенных цилиндрических редукторов общего назначения приведены на Рис. 5. На всех схемах ведущий и ведомый валы соответственно обозначены Б и Т (быстроходный, тихоходный).
На Рис. 5,а показана схема самого простого одноступенчатого редуктора. Редуктор может иметь четыре различных исполнения,
Рис. 5. Кинематические схемы цилиндрических редукторов общего назначения
отличающихся взаимным расположением выведенных концов ведомого и ведущего валов. Более сложные многоступенчатые редукторы (кроме соосных) также могут иметь различные сборки.
Наиболее простая конструкция двухступенчатого редуктора (Рис. 5,б) имеет несимметричное расположение зубчатых колес относительно опор, что вызывает увеличение неравномерности распределения нагрузки по ширине колеса, вследствие чего увеличивается расчетный крутящий момент передачи. Для уменьшения неравномерности распределения нагрузки валы зубчатых колес должны обладать достаточной жесткостью, причем это особенно необходимо при высоких твердостях рабочих поверхностей зубьев или при резко меняющейся по величине нагрузке, так как в этих случаях отсутствуют условия выравнивания нагрузки в результате приработки.
Редуктор, приведенный на Рис. 5,б, может, быть выполнен с прямозубными и косозубыми колесами. В случае применения последних углы наклона зубьев на колесах промежуточного вала принимаются одинакового направления, как показано на фигуре, так как при этом осевые усилия на колесах направлены в противоположные стороны, вследствие чего уменьшается суммарное осевое усилие, воспринимаемое подшипником.
На Рис. 5,в изображена схема трехступенчатого редуктора. Первый вал быстроходной передачи здесь изготовлен с двумя шестернями, из которых работает только одна. Однако при износе зубьев шестерни (шестерня, вращаясь быстрее колеса, изнашивается быстрее) можно вал повернуть и ввести в зацепление с колесом вторую резервную шестерню. Этим достигается повышение долговечности редуктора.
Такую же резервную шестерню на валу можно установить (или изготовить заодно с валом) и в редукторе, схема которого приведена на Рис. 5,б.
На Рис. 5,г представлена схема соосного редуктора, которая во многих случаях предпочтительней других схем, так как дает большие преимущества при компоновке машин. Однако, если редукторы, приведенные на Рис. 5,а, б, в, легко выполнить двухсторонними, выведя концы входных и выходных валов на обе стороны, то соосные редукторы этого не допускают. Поэтому редукторы первых трех типов более универсальны с точки зрения расположения на машине, чем соосные. Кроме того, недостатком соосного редуктора являются большая ширина и несимметричное расположение колес относительно опор.
Схема, представленная на Рис. 5,д, выгодно отличается от схемы, приведенной на Рис. 5,б, так как здесь осуществлено симметричное расположение опор наиболее нагруженной тихоходной передачи относительно колес. Для обеспечения равномерного распределения передаваемой мощности между обеими параллельными парами быстроходной передачи обе половины раздвоенной шестерни выполняются косозубыми с противоположными углами наклона зубьев, а подшипники конструируются таким образом, чтобы вал шестерни имел возможность осевого перемещения. При этом осевые усилия на обеих половинах шестерни направлены в противоположные стороны, как показано па Рис. 5,б, и шестерня сама находит положение, при котором осевые силы на обеих половинах уравновешиваются. Так как окружные усилия в косозубой передаче пропорциональны осевым, то передаваемая мощность распределяется при этом равномерно между параллельными парами быстроходных передач.
Это же равенство передаваемой мощности на параллельных парах колес имеет место и в редукторе, схема которого приведена на Рис. 5,е, где раздвоена тихоходная передача. При этом колеса быстроходной передачи должны быть приняты прямозубыми, чтобы промежуточный вал имел возможность свободно перемещаться в осевом направлении и находить себе положение, при котором нагрузки, передаваемые параллельными парами колес тихоходной передачи, будут равны.
Однако так как динамические усилия возрастают с увеличением окружной скорости, а в косозубых передачах динамические усилия значительно меньше, чем в прямозубых, то быстроходную передачу выгодней конструировать косозубой. По этим причинам схема, приведенная на Рис 5,е, менее рациональна, чем та, что приведена на Рис. 5д по она может быть улучшена, если первую быстроходную передачу принять шевронной и дать возможность осевого перемещения также и валу шестерни быстроходной ступени.
Соосный редуктор также может быть выполнен с раздвоенной передачей (Рис. 5,ж), вследствие чего размеры колес и редуктора могут быть значительно сокращены. Однако надо отметить, что данную схему редуктора нельзя рекомендовать, поскольку практически из-за ошибок в шаге зубьев колес невозможно обеспечить равномерную загрузку раздвоенных передач.
Этого недостатка лишена схема, приведенная на Рис. 5,з, у которой на быстроходном валу посажены две косозубые шестерни с противоположными углами наклона зубьев, а вал имеет возможность осевого перемещения. Поэтому при работе редуктора вал сам найдет положение, при котором нагрузка на шестерни уравновесится.
На Рис. 5,и приведена схема трехступенчатого редуктора с раздвоенной быстроходной и тихоходной передачами. Для равномерного распределения нагрузки между параллельными передачами необходимо, чтобы один из валов быстроходной и тихоходной передачи имел свободу осевого перемещения.
Чрезвычайно большое распространение цилиндрических редукторов общего назначения определило установление стандартов на основные параметры редукторов (ГОСТ 2185-55).
Стандарты распространяются на одно-, двух- и трехступенчатые редукторы, выполненные в виде самостоятельных узлов с цилиндрическими прямозубыми, косозубыми или шевронными зубчатыми колесами внешнего зацепления. На редукторы специального назначения гост не распространяется.
При проектировании их приходится не только определять прочные размеры передач, но и находить рациональные параметры редуктора (число зубьев, межосевые расстояния, передаточные числа, материалы, ширину колес и т. д.).
ГОСТ 2185-55 устанавливает величину межцентрового расстояния передач разных типов стандартных редукторов (табл. 3).
Значения коэффициента ширины зуба могут выбираться из следующего ряда (ГОСТ 2185-55): 0,20; 0,25, 0,30; 0,40; 0,50; 0,60; 0,80; 1,0; 1,2.
ЧЕРВЯЧНЫЕ РЕДУКТОРЫ С ЦИЛИНДРИЧЕСКИМИ И ГЛОБОИДНЫМИ ЧЕРВЯКАМИ
Из червячных редукторов наиболее распространены в настоящее время редукторы с цилиндрическими и глобоидными червяками. Передаточное отношение одной червячной передачи от 8 до 100, а иногда может доходить до 1000, что позволяет получить компактную конструкцию редуктора. В червячных редукторах в течение продолжительного времени применялись исключительно червячные передачи с цилиндрическим
Рис. 8. Типы цилиндрических червяков
червяком ввиду их простоты в изготовлении и регулировке. Цилиндрический червяк червячной передачи представляет собой винт с резьбой различного профиля, наружная поверхность витков которого имеет форму цилиндра. По форме профиля витка червяки бывают архимедовы, конволютные и эвольвентные. Архимедовы червяки (Рис. 8,а) имеют в осевом сечении витка трапецеидальный профиль, а в торцовом сечении очерчены архимедовой спиралью. Изготавливаться эти червяки могут па обычных токарно-винторезных станках, что определило их широкое распространение. Применяются архимедовы червяки в основном без шлифовки, так как требуют специально профилированного шлифовального круга. В связи с возросшими требованиями к червячным передачам этот тип червяка в настоящее время находит применение в основном при мелкосерийном производстве.
Раздел 18. Приводы. Редукторы и мотор-редукторы общего назначения
Приводы. Классификация.
Объектами курсового проектирования в курсе «Детали машин» обычно являются приводы машин и механизмов (например: приводы ленточных транспортеров, цепных конвейеров, индивидуальные приводы машин и механизмов), использующие большинство деталей и узлов общего назначения.
Структурная схема привода включает двигатель того или иного типа и трансмиссию.
В курсовом проекте трансмиссия состоит из комбинации редуктора и открытой передачи.
Приводы транспортных машин, разнообразного станочного оборудования, вспомогательных устройств и средств механизации различных работ (стенды, установки, приспособления с машинным приводом) и т.п. допускают применение стандартных двигателей и однотипных механических передач, в том числе стандартных редукторов, что позволяет отнести эти приводы к категории общего назначения.
Машинные приводы общего назначения классифицируют по ряду признаков.
Основными из них являются:
— число двигателей и схемы соединения их с передачами;
— тип двигателя; тип передачи.
По числу двигателей различают приводы:
Групповым называют привод, при котором от одного двигателя посредством механических передач приводятся в движение несколько отдельных механизмов или машин. Привод этого типа применяется в различных строительных и погрузочно-разгрузочных машинах. Групповой привод имеет низкий КПД, громоздок и сложен по конструкции.
Однодвигательный привод наиболее распространен, особенно при использовании электродвигателей. Каждая производственная машина снабжается индивидуальным приводом.
По типу двигателей различаются приводы:
-с двигателями внутреннего сгорания,
— с паровыми двигателями,
Приводы могут иметь следующие типы передач:
По расположению механизма привода в пространстве различают:
— приводы с горизонтальным тихоходным выходным валом;
— приводы с вертикальным тихоходным выходным валом.
В зависимости от расположения привода конструируют элементы передач и выбирают тип и исполнение двигателя.
Редукторы
Редуктором называют агрегат, содержащий передачи зацеплением и предназначенный для повышения вращающего момента и уменьшения угловой скорости двигателя. Редукторы широко применяют в различных отраслях машиностроения благодаря высоким экономическим, потребительским и другим характеристикам. В корпусе редуктора размещены зубчатые или червячные передачи, неподвижно закрепленные на валы. Валы опираются на подшипники, размещенные в гнездах корпуса. Установка передачи в отдельном корпусе гарантирует точность сборки, лучшую смазку, более высокий КПД, меньший износ, а также защиту от попадания в нее пыли и грязи. Во всех ответственных установках вместо передач назначают редукторы. Редукторы имеют исключительно широкое применение.
Назначение редуктора — понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим. Механизмы для повышения угловой скорости, выполненные в виде отдельных агрегатов, называют ускорителями или мультипликаторами.
Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи — зубчатые колеса, валы, подшипники и т. д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников (например, внутри корпуса редуктора может быть помещен шестеренный масляный насос) или устройства для охлаждения (например, змеевик с охлаждающей водой в корпусе червячного редуктора).
Редуктор проектируют либо для привода определенной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назначения. Второй случай характерен для специализированных заводов, на которых организовано серийное производство редукторов.
Внешние (потребительские) характеристики редукторов каждого типа определяются следующим:
— кинематической схемой редуктора,
— передаточным числом u (частотой вращения выходного вала),
— вращающим моментом на выходном валу,
— допускаемой консольной нагрузкой на выходном валу,
— силовой характеристикой редуктора,
— коэффициентом полезного действия (КПД).
По ГОСТ 16162-86Е к редукторам общемашиностроительного применения относят:
— цилиндрические одно-, двух- и, трехступенчатые с межосевым расстоянием тихоходной ступени a ω т ≤ 710 мм;
— цилиндрические планетарные одно- и двухступенчатые с радиусом расположения осей сателлитов водила тихоходной ступени r ≤ 200 мм;
— конические одноступенчатые с номинальным внешним делительным диаметром ведомого колеса d вм ≤ 630 мм;
— червячно-цилиндрические двухступенчатые с межосевым расстоянием тихоходной ступени a ω т ≤ 250 мм.
В соответствии с ГОСТ 29076–91 редукторы и мотор-редукторы обще машиностроительного применения классифицируют в зависимости от :
— числа ступеней ( одноступенчатые, двухступенчатые и т. д.);
— взаимного расположения геометрических осей входного и выходного валов в пространстве ( горизонтальное и вертикальное);
— способа крепления редуктора (на приставных лапах или на плите, фланец со стороны входного/выходного вала насадкой);
— расположения оси выходного вала относительно плоскости основания и оси входного вала (боковое, нижнее, верхнее) и числа входных и выходных концов валов.
Тип и конструкция редуктора определяются видом, расположением и количеством отдельных его передач (ступеней).
Самый простой зубчатый редуктор – одноступенчатый (цилиндрический (рис.1.1, а)). Используется при малых передаточных числах i ≤ 8 … 10, обычно i ≤ 6,3.
Двухступенчатый цилиндрический зубчатый редуктор (1.1,б) является наиболее распространенным (их потребность оценивается в 65%). Для них наиболее характерны числа i = 8-40.
Трехступенчатые редукторы (рис.1.1, в) применяются при больших передаточных числах. Однако имеется тенденция замены их более компактными планетарными редукторами.
Рис.1.1. Зубчатые редукторы
Для улучшения работы наиболее нагруженной тихоходной ступени ( T ) используются редукторы с раздвоенной быстроходной ступенью (рис.1.1, г). Для создания равномерной нагрузки обеих зубчатых пар быстроходной ступени, их делают косозубыми, причем, одну пару правой, а вторую – левой. Зубчатые колеса на тихоходном валу располагаются симметрично. При этом деформация вала (Т) не вызывает существенной концентрации нагрузки по длине зубьев. Это положительное явление. Такие редукторы получаются на 20% легче, чем по обычной развернутой схеме (рис.1.1, в).
Соосные редукторы (рис.1.1, д) применяют с целью уменьшения длины корпуса или других конструктивных особенностей привода.
Мотор-редукторы представляют собой компактные агрегаты, в которых редуктор и мотор монтируются в одном корпусе. В большинстве случаев мотор-редукторы имеют зубчатые передачи. Они более экономичны, чем тихоходные электродвигатели, имеют более высокий КПД. Но из-за сложности конструкции мотор-редукторы применяются редко.
— с нижним расположением червяка (под колесом) – применяются при окружных скоростях червяка V ≤ 5 м/ c ; смазка – окунанием червяка, допускают передачу большой мощности по критерию нагрева (рис.1.2, а).
— с верхним расположением червяка (червяк над колесом) – применяются в быстроходных передачах; смазка осуществляется окунанием колеса (рис.1.2,б).
— червяк с горизонтальной осью, сцепляющейся с колесом, имеющим вертикальную ось (рис.1.2,в).
— червяк с вертикальной осью, расположенный сбоку колеса. Колесо имеет горизонтальную ось (рис.1.2,г).
Две последних конструкции применяют ограниченно, в связи с трудностью смазки подшипников вертикальных валов
Возможности получения больших передаточных чисел при малых габаритах обеспечивают планетарные и волновые редукторы.
Рис.1.2. Схемы червячных редукторов: а) с нижним; б) с верхним; в, г) с боковым расположением червяка
Мотор – редукторы обозначаются добавлением спереди буквы М. Например, МЦ2СВ означает мотор – редуктор с двухступенчатой соосной цилиндрической передачей, где горизонтальные оси вращения валов расположены в одной вертикальной плоскости, здесь В не индекс, поэтому пишется рядом с заглавной буквой.
Обозначение типоразмера редуктора складывается из его типа и главного параметра его тихоходной ступени. Для цилиндрической, червячной глобоидной передачи главным параметром является межосевое расстояние; планетарной – радиус водила, конической – диаметр основания делительного конуса колеса, волновой – внутренний посадочный диаметр гибкого колеса в недеформированном состоянии.
Под исполнением принимают передаточное число редуктора, вариант сборки и формы концов валов. Пример условного обозначения одноступенчатого цилиндрического редуктора с межосевым расстоянием 160 мм и передаточным числом 4: редуктор Ц-160-4.
Вариант сборки цилиндрических редукторов и формы концов валов по ГОСТ 20373-74; червячных редукторов – по ТУ 2.056.218-83, а коническо – цилиндрических редукторов – ГОСТ 20373-80.
Редукторы общемашиностроительного применения в приводах комплектуются преимущественно четырехполюсными электродвигателями.
По ГОСТ 16162-86Е основные параметры редукторов определяют при номинальной частоте вращения быстроходного вала n б=1500 об/мин. Допускается использование редукторов при n б=3000 об/мин, с условием, что окружная скорость зубчатых передач не превышает 16 м/с.
Выбор горизонтальной или вертикальной схемы для редукторов всех типов обусловлен удобством общей компоновки привода (относительным расположением двигателя и рабочего вала приводимой в движение машины и т.д.).
Двигатель и трансмиссия, как правило, монтируются на общей раме.
Новые редукторы имеют гладкие основания корпусов с утопленными лапами, а крышки имеют горизонтальные поверхности верхних частей, служащие технологическими базами (рис.1.3).
Корпуса редукторов новой конструкции имеют следующие преимущества:
1. Увеличен объем масла, что увеличивает срок его годности.
3. Большая жесткость основания и податливая крышка корпуса, что улучшает виброакустические свойства.
4. Меньшее коробление при старении, что исключает течь масла;
5. Уменьшение отказов примерно на 30% из-за повышенной прочности утопленных лап.
6. Упрощение дренажирования накопленного масла от разбрызгивания из подшипниковых узлов.
8. Простота наружной обработки.
9. Отсутствие цековки под головки стяжных винтов корпуса с основанием.
10. Обеспечение требования технической эстетики.
Рис.1.3. Корпус редуктора типа КЦ 1 новой конструкции
Основные детали и показатели качества редукторов, мотор – редукторов и вариаторов
Для удобства сборки корпус редуктора выполняется составным – основание и крышка. Основание с помощью лап или пояса крепится к фундаменту или раме. Для точной установки крышки на основани е корпуса пользуются коническими штифтами.
Корпус редуктора должен быть прочным и жестким, т.к. его деформации могут вызвать перекос валов и неравномерное распределение нагрузки по длине зубьев. Для повышения жесткости корпуса его уси ливают наружными или внутренними ребрами.
Корпусы редукторов обычно выполняют литыми из серого чугуна (СЧ 15-32/ СЧ 18-36) средней прочности. Для передачи больших мощностей или ударных нагрузок корпусы отливают из высокопрочного чугуна или стали. В индивидуальном и мелкосерийном производствах корпусы редукторов изготавливают сварными из листовой стали.
Основные размеры корпуса – длина, ширина и высота – применяются в зависимости от размеров зубчатых колес. Другие размеры находятся по эмпирическим формулам.
Опоры валов редукторов выполняются в виде подшипников качения. Обычно в опорах устанавливается по одному подшипнику качения. При малых и средних нагрузках применяют шарикоподшипники, при средних и больших – роликоподшипники. В редукторах с шевронной передачей быстроходный вал передачи устанавливают на плавающих, обычно, цилиндрических роликоподшипниках. Это обеспечивает самоустановку вала по оси и одинаковую нагрузку полушевронов.
В редукторах с конической передачей для лучшей фиксации зубчатых колес в осевом направлении валы передачи рекомендуется устанавливать на радиально-упорных, чаще конических роликоподшипниках.
Смазка подшипников редуктора при V > 4 м/ c может осуществляться тем же маслом, что и зубчатых колес, путем разбрызгивания масла. При V м/ с предусматривается самостоятельная (консистентная) смазка. При больших скоростях и нагрузках на подшипники предусматривается смазка под давлением, осуществляемая от общей системы.
Расчет зубчатого редуктора состоит из расчета его элементов – передач, валов, шпонок, подшипников. Для редукторов большой мощности производится тепловой расчет. При расчете зубчатых передач редукторов, выполненных в виде самостоятельных агрегатов, основные параметры этих передач должны быть согласованы с соответствующими ГОСТ.
Червячные колеса с целью экономии цветных металлов выполняются с венцом из антифрикционных материалов и стальным или чугунным центром.
— бандажированная конструкция, в которой бронзовый обод (венец) посажен на стальной центр с натягом. Рекомендуется легкопрессовая реже прессовая посадки. Чтобы исключить возможность сдвига венца, ввертывают в стыкуемые поверхности винты. Конструкция применяется для колес относительно небольших размеров и ненапряженных в тепловом отношении (рис. 1.4).
— болтовая конструкция, в которой бронзовый венец, выполненный с фланцем, прикрепляется болтами к ступице колеса. Применяется для колес больших и средних диаметров.
— б иметаллическая конструкция, бронзовый венец, который отлит в форму с предварительно вставленным в нее центром. Конструкция наиболее рациональна и применяется в редукторах серийного производства.
Рис.1.4.Типовые конструкции зубчатых венцов червячных колес
В червячных передачах, как правило, применяются подшипники качения.
Смазка червячных передач с нижним расположением червяка (рис. 1.2) осуществляется окунанием. Уровень масла таков, чтобы погружался в масло на глубину, близкую к высоте витка. Если червяк расположен сверху, то уровень масла роли не играет (при средних и небольших скоростях). В быстроходных передачах этого типа применяют циркуляционную – принудительную смазку.
Для многоступенчатых редукторов и мотор-редукторов показателями назначения являются межосевое расстояние и радиус расположения осей сателлитов и задают их по величине выходной ступени с обозначением a ω T и R т.
Передаточные числа редукторов выбирают по нормальному ряду чисел со знаменателем 1,25 (1-й предпочтительный ряд) или со знаменателем 1,12 (2-й ряд).
Межосевые расстояния быстроходной ( α w Б) и тихоходной ( α wT ) ступеней двух и трехступенчатых редукторов зубчатых цилиндрических должны соответствовать ГОСТ
Одноступенчатые редукторы имеют наибольшие передаточные числа u :
— для цилиндрических передач до 8;
— для конических до 6,3;
— для червячных до 80.
Выпускаются редукторы и мотор-редукторы в широком диапазоне передаточных чисел: от u min =1 (для одноступенчатых конических и цилиндрических редукторов) до u max =3150 (для мотор-редукторов, планетарных и некоторых других типов редукторов). Большинство отечественных и зарубежных редукторов имеют u ≤ 160. Около 75 % редукторов выполняют в двухступенчатом исполнении ( u =8-40).
Номинальные значения передаточных чисел редукторов установлены двумя рядами (1; 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20 и т.д.).
Для обеспечения взаимозаменяемости редукторов составлены три ряда номинальных значений моментов Тт ( Нм ).
Так, ряд 1 включает значения Тт =31,5; 45; 63; 90; 125; 180; 250; 355; 500; 710; 1000 и др.
Реальный диапазон передаточных отношений (чисел) редукторов — от 1 до 1000. Значения передаточных отношений должны соответствовать ряду R 20 предпочтительных чисел (ГОСТ 8032–84).
Тип редуктора, параметры и конструкцию определяют в зависимости от его места в силовой цепи машины, передаваемой мощности, частоты вращения, назначения машины и условий ее эксплуатации.
К определяющим параметрам относят межосевые расстояния, внешние делительные диаметры конических колес, радиусы водил или дели тельные диаметры центральных колес с внутренними зубьями в плане тарных передачах, ширину колес, модули и передаточные отношения, коэффициенты, диаметры червяка и число винтов червяка (для червячных передач).
Классификационные группировки редукторов, мотор-редукторов и вариаторов приведены в таблице 1.
- межосевое расстояние полотенцесушителя что это
- межосевое расстояние у радиаторов отопления что это