модифицированная синусоида ибп что это
Вопросы и ответы
Инверторы
Многие клиенты Центра Альтернативной Энергетики «АльтЦентр» зачастую путают понятия «инвертор» и «ИБП” (Источник Бесперебойного Питания). Вследствие чего, у них возникают вопросы к работе данных устройств. Это приводит к тому, что автономные энергосистемы, с подобранным неправильно оборудованием, в ответственный момент просто отключаются. Разберем по порядку, что представляют собой эти два, на первый взгляд, аналогичных устройства.
Инвертор предназначен для преобразования тока постоянного напряжения в ток переменного напряжения (DC-AC). Обычно инвертор изготавливают для преобразования тока по стандартам 12В, 24В, 48В и 96В в общепринятый ток с переменным напряжением 220В с частотой 50Гц. Более сложные и дорогие, чаще промышленные, инверторы с тремя каналами преобразования способны преобразовывать в трехфазное напряжение 380В, которое необходимо для работы асинхронных двигателей.
По форме выходного напряжения инверторы подразделяются на:
— инверторы с модифицированной синусоидой. Такое напряжение подходит для простых электропотребителей, использующих импульсный блок питания.
— инверторы с чистой синусоидой. Такое напряжение необходимо для требовательных к качеству сигнала электроприборов (холодильники, котлы отопления, асинхронные двигатели, дроссели и т.д).
При правильном подборе мощности инвертора, и его условий эксплуатации, инвертор можно использовать непрерывно.
— Блока мощных быстродействующих реле для мгновенного переключения нагрузки с внешней электросети на внутренний источник, порядка нескольких миллисекунд (2-6) для исключения разрыва в электропитании потребителей.
— Инвертора, который служит для преобразования постоянного тока с аккумуляторов в переменное напряжение 220В.
— Встроенного зарядного устройства, для заряда аккумуляторных батарей от внешней электросети.
— Блока управления и отображения информации, для управления и регулировки работы ИБП.
Также, как и инверторы, ИБП подразделяются по форме выходного напряжения на:
— ИБП с модифицированной синусоидой. Такое напряжение подходит для простых электропотребителей, использующих импульсный блок питания.
— ИБП с чистой синусоидой. Такое напряжение необходимо для требовательных к качеству сигнала электроприборов (холодильники, котлы отопления, асинхронные двигатели, дроссели и т.д).
Во-вторых, есть доля «лукавства» самих производителей. Большинство производителей инверторов пытаются сделать их более универсальными, особенно это касается инверторов с их узкой направленностью. В инвертор добавляют возможность работать от электросети переменного напряжения, внедряют блок реле переключения с аккумуляторных батарей на внешнюю электросеть. Соответственно, в них появляется зарядное устройство и блок управления, что увеличивает номинальную стоимость устройства, но не всегда удовлетворяет требованиям клиента
При выборе инвертора для автономной электростанции на солнечных батареях или ветрогенераторе на своем объекте у клиентов Центра Альтернативной Энергетики «АльтЦентр» часто возникает вопрос, как правильно выбрать инвертор и не совершить ошибок при выборе.
Основные ошибки выбора инвертора:
Подключение и длительная работа нагрузки с мощностью обозначенной на корпусе инвертора. Часто производители инверторов пишут на корпусе инвертора максимальную или пиковую мощность инвертора, на которой инвертор может работать не более 10-30 минут на максимальной мощности и не более 5-15 секунд на пиковой. При этом номинальная мощность инвертора составляет на 30-50% меньше максимальной мощности, и на 50-100 % меньше пиковой мощности. Использование нагрузки с постоянной номинальной мощностью равной максимальной или пиковой мощности инвертора приведет либо к отключению инвертора по защите, если такая имеется, либо к перегреву и выходу из строя инвертора, проще говоря перегоранию. Также большинство подключаемых нагрузок имеют пусковую мощность от 1,5 до 10 раз превышающей номинальную мощность, соответственно для такого оборудования необходимо выбирать инвертор с максимальной мощностью равной пусковой мощности нагрузки, либо ее превышающей. К примеру, номинальная мощность двигателя компрессора холодильника 150-300 Вт, а пусковая мощность двигателя компрессора достигает 2000 Вт. Соответственно для работы холодильника от инвертора, максимальная мощность инвертора должна быть не менее 2000 Вт.
Инверторы подразделяются на два типа с идеальной синусоидой и с модифицированной синусоидой. Инверторы с модифицированной или аппроксимированной синусоидой можно применять для питания простых устройств типа лампочек, нагревателей или для устройств имеющих импульсный блок питания, компьютеры, цифровая техника, и другие устройства нетребовательные к качеству питающего тока. Инверторы же с идеальной синусоидой формы выходного сигнала необходимы для питания устройств, требовательных к питающему напряжению. К ним относятся, насосы отопительного оборудования, холодильники, асинхронные двигатели, дроссели и т.д). Для данных электроприборов ступенчатая форма питающего сигнала наводит помехи в работе, приводит к перегреву и выходу из строя. Лучше всего использовать инверторы с идеальной синусоидой, они подходят ко всему оборудованию, вследствие чего не возникает проблем.
Часто многие пользователи пытаются из источников бесперебойного питания для компьютеров, которые значительно дешевле автономных инверторов, сделать инвертор для питания электрооборудования в автономной электростанции, путем увеличения количества аккумуляторных батарей. Источники бесперебойного питания для компьютерной техники не подходят (. ) для этого по следующим причинам:
а) ИБП для компьютера не рассчитан на длительное время работы. Его рабочее время не более 15-30 минут, для сохранения данных на компьютере и безопасного завершения работы. Потом он автоматически выключится по перегреву, так как его номинальная мощность, указанная производителем, фактически равна максимальной. Соответственно и аккумуляторы у него используются встроенные небольшой емкости, рассчитанные на его рабочее время при номинальной мощности. Если убрать защиту то он просто сгорит, что может привести к пожару.
б) Увеличение емкости аккумуляторных батарей приведет к большему времени работы, если нет защиты, то инвертор может перегреться и сгореть что может привести к пожару.
в) Увеличение емкости аккумуляторных батарей приведет к повышенной нагрузке на встроенное зарядное устройство ИБП, вследствие чего оно перегреется и сгорит, что может привести к пожару.
Так как мощность компьютерного ИБП фактически указана максимальная и составляет менее 1500 Вт, а суммарная мощность стационарного компьютера не более 1000 Вт, и практически нет пусковых токов, то при подключении холодильника, ИБП не выдержит пусковой мощности двигателя компрессора холодильника и сгорит, что может привести к пожару, в чем, к сожалению, убедились многие «умельцы».ИБП для компьютера почти все имеют модифицированную синусоиду. Так как компьютер и его устройства имеют импульсные блоки питания, которым не важна форма синусоиды питающего напряжения. Соответственно подключение к таким ИБП холодильника, газового котла, и другого оборудования, чувствительного к форме сигнала питающего напряжения, приведет к их поломке, или от неправильной работы и помех они перегреются и сгорят, что может привести к пожару
Основная функция источника бесперебойного питания для компьютера – поддержание работы компьютера при колебаниях электрического сигнала в электросети и безопасное завершение работы компьютера с сохранением информационных данных при отключении электроэнергии.
Большинство автомобильных инверторов не имеют ограничения по разряду подключенных аккумуляторов, соответственно при отсутствии контроля, аккумуляторные батареи будут полностью разряжены, что значительно сократит их последующий срок службы. В автономных инверторах есть контроль заряда аккумуляторных батарей, и программное обеспечение, следящее за уровнем их заряда, величиной нагрузки. Автономный инвертор автоматически отключит питание от акб либо отключит питание части неосновной нагрузки в случае падения уровня заряда до установленного. Также в таких инверторах возможна ручная настройка уровня остаточного заряда АКБ. Данная функция позволят сохранять остаточный заряд АКБ, продляя срок службы аккумуляторных батарей.
При выборе инвертора для электростанции на своем объекте у клиентов Центра Альтернативной Энергетики «АльтЦентр» часто возникает вопрос, в чем отличие инверторов с чистой и модифицированной синусоидой?
Рассмотрим типы выходных сигналов с инверторов и метод их получения. Начнем с самого простого.
Такие инверторы практически не выпускаются, так как данный сигнал негативно влияет на работу оборудования и способен вывести его из строя.
В отличие от простого меандра имеет режим короткого замыкания в коммутаторе, в результате имеем паузу в нулевом значении напряжения, создающую определенную ступеньку в форме сигнала.
При использовании дополнительных задержек на различных уровнях напряжения можно получить многоступенчатую форму сигнала или аппроксимированную синусоиду, что тоже является модифицированной, но максимально приближенной к идеальной синусоиде формой сигнала.
Несмотря на близкую приближенность к идеальной синусоиде, и расширенное использование, данная форма сигнала все равно не подходит для многих типов устройств, так как для них любая ступень в форме питающего сигнала наводит помехи в работе и приводит к перегреву и выходу из строя оборудования.
Инверторы с модифицированной или аппроксимированной синусоидой можно применять для питания простых устройств типа лампочек, нагревателей или для устройств, имеющих импульсный блок питания, компьютеры, цифровая техника, и другие устройства нетребовательные к качеству питающего тока.
Инверторы с идеальной синусоидой формы выходного сигнала необходимы для питания устройств, требовательных к питающему напряжению. К ним относятся, насосы отопительного оборудования, холодильники, асинхронные двигатели, дроссели и т.д.
Чистая синусоида VS её ступенчатая аппроксимация. Часть II
Содержание
Содержание
В первой части публикации было рассмотрено, что такое ступенчатая аппроксимация синусоиды или, как ее еще называют, квазисинусоида, и как себя ведут светодиодные, люминесцентныелампы и устройства с трансформаторными источниками питания. Что ж, продолжаем эксперименты на эту тему.
Устройства, имеющие электродвигатели
Какие устройства с двигателями потенциально могут подключаться к системам питания с квазисинусом? В первую очередь электроинструменти вспомогательное электрооборудование — дрели, перфораторы, бетоносмесители, болгарки, шлифмашинки, погружные насосы и прочее подобное. В таких устройствах применяются коллекторные или асинхронные двигатели. В некоторых электроинструментах имеется встроенный регулятор мощности. Вряд ли данное оборудование будет запитываться от источника бесперебойного питания. В большинстве случаев для его автономного питания будет использован бензогенератор или мощный инвертор 12/220 В, например, в гараже, в котором нет электросети.
Сравним работу электроинструмента от розетки и от инверторного бензогенератора с квазисинусом. Параметры снимались при работе оборудования на холостом ходу, кроме насоса. Дополнительно проверялась работа под нагрузкой с целью оценить изменение мощности на валу.
По результатам данных тестов можно отметить неудовлетворительную работу электроинструмента и оборудования, имеющего в составе регулятор мощности. Это связано с тем, что большинство регуляторов мощности для переменного напряжения построены на симисторах или тиристорах, такие регуляторы часто называют диммерами. Так вот, диммеры могут правильно работать исключительно с синусоидальным напряжением. Так получилось не специально, просто, когда их придумывали, в исходных данных технического задания было написано, что напряжение будет синусоидальным.
В работе оборудования, не имеющего регулятора мощности, каких-либо значимых отрицательных изменений не отмечалось. При работе асинхронных двигателей от квазисинуса прослушивался характерный «звонкий» шум сердечника и обмоток частотой выше 50 Гц. Перегрева также не наблюдалось. При работе коллекторных двигателей из-за их шума оценить изменение звука не представлялось возможным.
Системы отопления
Часто возникает вопрос о возможности использования недорогих компьютерных источников бесперебойного питания (ИБП) с квазисинусом для резервного питания электрического оборудования в системах отопления — циркуляционных насосов, энергозависимых газовых котлов. В газовом котле с закрытой камерой сгорания кроме циркуляционного насоса установлен вентилятор принудительной тяги или, как его еще называют, вентилятор отвода продуктов горения. Проведем несколько тестов в этом направлении.
Как выяснилось, квазисинус не оказывает заметного негативного влияния на работу циркуляционного насоса. По крайней мере, непродолжительная работа от ИБП на время отключения основного электропитания уж точно ему не навредит. Единственный минус — это неприятные звуки, которые издает насос при питании квазисинусом.
Хуже дело обстоит с вентилятором принудительной тяги. При питании квазисинусом от ИБП вентилятор заметно снижал обороты и потребляемую мощность. А ведь в большинстве настенных газовых котлов установлены именно такие вентиляторы — асинхронные с одной обмоткой. Очевидно, что снижение производительности данного вентилятора негативно повлияет на процесс отвода продуктов горения, а значит на работу котла в целом.
Кроме того, в некоторых котлах применяется автоматическая регулировка оборотов данного вентилятора с целью оптимизации производительности котла. Так вот, регулировка эта также выполнена по принципу диммирования. А диммеры «плохо относятся» к квазисинусу, значит, поведение такого вентилятора может быть непредсказуемым.
Таким образом, если котел с закрытой камерой и имеет вентилятор принудительной тяги, то питание его квазисинусом настоятельно не рекомендуется.
В остальных случаях все не так страшно, но, не зная конструкции того или иного котла лучше не рисковать и не использовать ИБП с квазисинусом для его питания. Газовый котел — это серьезное оборудование, которое изначально рассчитано на питание синусоидальным напряжением.
Устройства с импульсными источниками питания
Как уже было сказано, недорогие ИБПв большинстве случаев выдают ступенчатую аппроксимацию синусоиды. И для временного резервного питания компьютеров это считается нормой. Посмотрим, как изменяются входные параметры импульсного блока питания компьютера при переходе на питание «аппроксимацией синусоиды». Блоки питания без корректора коэффициента мощности. Тестирование проводилось в режиме бездействия системы и при запуске стресс-теста, чтобы увеличить потребляемую мощность. Мониторы также не были забыты. Результаты ниже.
Что интересно, у некоторых устройств при питании квазисинусом электрические параметры даже улучшались. Например, в системном блоке № 1 потребляемая мощность не изменялась, но значительно увеличился коэффициент мощности, из-за чего уменьшился средний потребляемый ток. У системного блока с БП от Zalman данный эффект тоже имеется, но не так выражен.
Однозначно можно сделать вывод о совместимости блоков питания системников с квазисинусом.
Однако есть одно жирное «НО». В последнее время все большее количество моделей БП оснащаются корректором коэффициента мощности (PFC). Данные устройства призваны поддерживать коэффициент мощности как можно ближе к единице при питании от сети с синусоидальным напряжением, дабы не перегружать сеть большими пиковыми токами. Поэтому по определению БП с PFC корректно работают только с синусоидальным напряжением, но это не значит, что, если ИБП выдает аппроксимацию синуса, то любой БП с PFC работать с ним не сможет. На самом деле схемотехнические решения PFC могут быть разные и некоторые модели могут быть не восприимчивы к квазисинусу — это дело случая. Необходимо отметить, что квазисинус далеко не основная вероятная причина несовместимости ИБП и PFC. Но это уже совсем другая история.
А что с мониторами? У одного из тестируемых при питании квазисинусом энергетические параметры ухудшились, но незначительно. Блок питания ноутбука каких-либо проблем не показал. Так что данные устройства можно запитывать квазисинусом.
Подводя итоги всей публикации, можно сказать, что использование напряжения квазисинусоидальной формы для питания различного электрооборудования — это лотерея, даже для блоков питания компьютеров. Ведь любое оборудование на напряжение 220–230 В переменного тока разрабатывалось с условием, что форма этого напряжения будет синусоидальной. Всякие «аппроксимации» — это всего лишь допущения, которые возможны с той или иной степенью вероятности. Поэтому, если строится универсальная система резервного электропитания, форма и параметры ее напряжения должны быть идентичны параметрам промышленной электросети. В общем, квазисинус — это плохо.
Чистая синусоида VS её ступенчатая аппроксимация. Часть I
Содержание
Содержание
Временами приходится пользоваться устройствами для автономного или резервного питания. Это могут быть автономные инверторные бензогенераторы, автомобильные инверторы, источники бесперебойного питания в режиме работы от батарей. В общем, все те устройства, в составе которых присутствует инвертор. И все бы ничего, но не все подобные устройства выдают на выходе синусоидальное переменное напряжение, на которое, собственно, и рассчитано все электрооборудование. То есть переменное-то оно у всех, а вот форма этого напряжения может быть далеко не синусоидальная.
В таких случаях в характеристиках устройства, в строке «Форма выходного напряжения» пишут «Ступенчатая аппроксимация синусоиды» или «Модифицированная синусоида» или «Квазисинусоида» или как-то еще.
Это означает, что там совсем не синусоида, а разнополярные прямоугольные импульсы, которые следуют с определенной паузой. Ниже на осциллограммах показаны синусоидальная форма напряжения в бытовой электросети (слева) и осциллограммы так называемой «квазисинусоиды», снятые с разных устройств.
Форма напряжения: а) в бытовой электросети; б) на выходе ИБП Back-UPS CS 500; в) на выходе инвертора 12/220 Mean Well
Нетрудно заметить, что амплитуды импульсов на осциллограммах с квазисинусоидой отличаются и составляют в первом случае 350–360 В, во втором — 290–300 В. Но их ширина подобрана таким образом, что среднеквадратичное значение получаемого переменного напряжения соответствует 225–230 В.
Казалось бы, нет проблем. Частота напряжения 50 Гц, среднеквадратичное значение соответствует 230 В. Но это только на первый взгляд. В сигнале, который отличается от синусоиды, присутствуют гармоники, т. е. получаемые разнополярные импульсы состоят не только из сигнала частотой 50 Гц, но и из сигналов более высоких частот, кратных основной частоте 50 Гц (150, 250, 350 и т. д.). Не будем углубляться в теорию, а просто скажем, что при запитывании оборудования подобной «квазисинусоидой» на него подается напряжение не только частотой 50 Гц, но и частотой 150 Гц, 250 и далее по нарастающей. При этом амплитуды этих напряжений хоть и уменьшаются с ростом частоты, но все же могут иметь достаточно высокий уровень. Уровень этих гармоник зависит от ширины импульса, его амплитуды и скорости нарастания.
Спектрограммы гармоник напряжения с выхода ИБП Back-UPS CS 500 (слева) и инвертора 12/220 Mean Well (справа) при нагрузке 25 Вт
Далее мы подробно рассмотрим различное электрооборудование и попробуем определить, насколько для него критична форма питающего напряжения.
Нагревательное электрооборудование
Оборудование, которое представляет собой активную нагрузку и не имеет в составе каких-либо регулирующих электронных устройств (диммеров), конденсаторов, индуктивностей, абсолютно не восприимчиво к форме питающего напряжения. Например, лампы накаливания, утюги, паяльники и другие нагревательные приборы. Но, к сожалению, такое оборудование всегда в меньшинстве.
Люминесцентные, светодиодные лампы и светильники
В конструкции таких ламп всегда присутствует устройство (драйвер), преобразующее напряжение 220–230 В в необходимое для питания светоизлучающих компонентов. Естественно, рядовой пользователь не знает принцип работы драйвера конкретной лампы или светильника и не может предположить, как они поведут себя при питании не синусоидальным напряжением, ведь они не рассчитаны на такие условия.
Проведем эксперимент, для статистики возьмем несколько ламп и светильников различных моделей и сравним их потребляемую мощность и другие параметры при подключении к обычной розетке и к устройству с «прямоугольной аппроксимацией синусоиды». Таким устройством будет источник бесперебойного питания фирмы APC с полной мощностью 500 В*А.
По результатам тестов заметно, что электрические характеристики ламп изменяются при питании квазисинусом. В большинстве случаев изменяются они в худшую сторону — увеличивается ток потребления и уменьшается коэффициент мощности. Критический случай, если в светодиодной лампе в качестве токоограничивающего элемента установлен конденсатор. При питании такой лампы квазисинусом со значительным уровнем гармоник потребляемая мощность может увеличиваться в разы, значит, и ток через светодиоды возрастает. Это можно наблюдать и визуально по изменению яркости свечения. Конечно, лампа в таком режиме прослужит недолго. Что интересно, при подключении такой лампы к автомобильному инвертору (12/230 В) подобного увеличения мощности не наблюдалось. Это связано с тем, что используемый для тестов инвертор выдавал разнополярные импульсы с меньшим уровнем гармоник, чем источник бесперебойного питания (рис. 2).
Напрашивается вывод: подключение светодиодных и люминесцентных ламп к источнику с прямоугольной апроксимацией синусоиды — это своего рода лотерея. Нет гарантии продолжительной работы ламп, и срок их службы будет зависеть от применяемого драйвера и конкретных параметров квазисинуса.
Устройства с трансформаторными источниками питания
Следующая группа электрооборудования — устройства, имеющие в своем составе трансформаторы. Для проведения тестов были выбраны два устройства — отечественный трансформатор ТС-40-2 и сетевой трансформаторный адаптер с выходным стабилизированным напряжением. Результаты тестов в таблице.
Схема классического трансформаторного источника питания
В тестировании трансформаторных источников питания помимо источника бесперебойного питания использовался инверторный преобразователь, который тоже имеет на выходе квазисинусоиду, но их параметры немного отличаются, о чем было сказано выше.
По результатам экспериментов можно наблюдать, что трансформаторные источники питания при питании их квазисинусом ведут себя вполне приемлемо и даже хорошо. Первое, что можно отметить это уменьшение тока холостого хода. И, как оказалось, чем больше уровни гармоник в питающем напряжении, тем этот ток меньше. Это связано с тем, что трансформатор в большей степени представляет собой индуктивную нагрузку, а реактивное сопротивление индуктивности с ростом частоты возрастает.
Из отрицательных моментов можно выделить следующее. Даже если у источника со ступенчатой аппроксимацией синусоиды среднеквадратичное напряжение будет составлять 230 В, но амплитуда импульсов будет завышена, то и на выходе выпрямителя мы получим завышенное напряжение. Это связано с тем, что фильтрующий конденсатор С (рис. 3) стремится зарядиться до амплитудного значения выпрямленного напряжения. Так, в указанной выше схеме при смене питающего синусоидального напряжения на квазисинусоиду напряжение на выходе повышалось с 16 до 19 В, что, естественно, повышало общую потребляемую мощность. Данный эффект наблюдался при питании этой схемы от источника бесперебойного питания, у которого при среднеквадратическом значении напряжения в 230 В амплитуда импульсов достигает 350 В.
Однако при питании данной схемы от автомобильного инвертора с амплитудой импульсов около 300 В наблюдалось даже некоторое уменьшение выходного напряжения. При этом среднеквадратичное значение напряжения инвертора также составляло 230 В.
Резюмируя, можно сказать, что, кроме возможного повышения напряжения во вторичных цепях трансформаторных источников питания, других негативных последствий для трансформаторов от квазисинусоиды не выявлено. Превышение же напряжения может в некоторой степени увеличить нагрев источника питания в целом, а будет это превышение или нет зависит от модели используемого ИБП или отдельного инвертора.
Необходимо отметить, что при питании трансформатора ступенчатой аппроксимацией синусоиды прослушивается характерный «звонкий» гул от трансформатора. «Звонкость» звука как раз и говорит о том, что в питающем напряжении есть составляющие с более высокими частотами, чем 50 Гц. Кроме возможных неприятных слуховых ощущений для человека этот звук не несет никаких негативных последствий для трансформатора.
В следующей части статьи будет рассмотрено поведение другого электрооборудования при питании его напряжением с формой, отличной от синусоидальной.