за счет чего тормозит самолет при посадке
Как тормозит самолёт 2. при посадке
Проблема торможения самолета после посадки на пробеге была малозначимой, наверное, только на заре авиации, когда самолеты летали медленнее современных автомобилей и были значительно легче последних. Но в дальнейшем этот вопрос становился все более важным и для современной авиации с ее скоростями он достаточно серьезен.
Чем же можно затормозить самолет? Ну, во-первых, конечно тормозами, установленными на колесном шасси. Но дело в том, что если самолет имеет большую массу и садится с достаточно большой скоростью, то часто этих тормозов просто не хватает. Они бывают не в состоянии за короткий промежуток времени поглотить всю энергию движения многотонной машины. К тому же если условия контакта (трения) между шинами колес шасси и бетонной полосой не очень хорошие (например, если полоса обледенела или мокрая во время дождя), то торможение будет еще хуже.
Однако, существуют еще два способа:
Первый – это тормозной парашют, т.е. использовать трение о воздух. Система достаточно эффективная, но не всегда удобная в применении. Представьте себе какой нужен парашют, чтобы затормозить, например, огромный Боинг-747, и какая должна быть парашютная служба в большом аэропорту, где самолеты садятся один за другим.
Второй способ в этом плане значительно более удобен. Это реверс тяги двигателя на самолете. Принципиально это достаточно простое устройство, которое создает обратную тягу, т.е. направленную против движения самолета, и, тем самым, его тормозит (см.фото). В реактивных двигателях существуют специальные ковшевые створки, которые перенаправляют воздушный поток. В нашем случае створки делят реактивную струю в направлениях: северо-запад и юго-запад. Если сложить их, получается, что струя отбрасывается влево, на запад, толкая при этом самолёт вправо, на восток, а самолёт в это время движется влево, на запад.
Чем тормозит самолет
Привет. Сегодня мы будем тормозить
Будем тормозить лайнер Boeing-737 Classic.
ВНИМАНИЕ! В тексте будет много спойлеров!
Итак, самолет можно тормозить как в полете, так и на земле. Начнем с воздуха.
Самолет можно тормозить:
а) Уменьшением режима работы двигателей
б) Изменением балансировочного положения
в) Увеличением лобового сопротивления путем высовывания различных штуковин в поток.
Первые два не особо интересны, поэтому так делать мы не станем.
Помимо синхронного подъема при торможении, 0,1,8 и 9 спойлеры помогают кренить самолет. Они поднимаются вместе с соответствующим элероном.
Поскольку высовывать штуковины в поток достаточно трудно, этим занимается гидросистема c помощью таких вот гидроцилиндров-«актюаторов». На фото актюатор Ground Spoiler`a, но суть, думаю, ясна
Для того, чтобы объеденить обе функции, используется совершенно адовый агрегат, который называется Spoiler Mixer & Ratio Changer. Название уже намекает, да?
Агрегат чисто механический, находится в нише основных стоек шасси. Он обрабатывает управляющие сигналы и тянет соответствующие тросы. Как паучок :3
Из кабины спойлеры управляются с помощью вот такого рычага слева от РУДов
а так же с помощью штурвалов в случае кренов.
На земле самолет можно тормозить
а) так же увеличением лобового сопротивления(Flight+Ground Spoilers)
б) изменением направления воздушного потока двигателей (реверсивные устройства)
в) как ааааавтомобиль, то есть с помощью колесных тормозов.
О варианте «А» мы уже говорили, поэтому перейдем сразу к реверсивным устройствам.
Реверс представляет собой набор агрегатов, которые перекрывают «холодный контур» двигателя и перенаправляют поток воздуха в сторону-вверх через решетки, которые вы можете видеть на фото выше.
Для того, чтобы не случилось перекоса, подачу гидрожидкости в цилиндры регулирует Synchro-Lock. К сожалению его фото не нашлось, поэтому будем разбираться на пальцах.
Короче, это такой гидромотор, который крутит гибкий вал, который крутит краны на каждом из гидроцилиндров, которые от этого равномерно питаются гидрашкой.
Тема в принципе очень объемная, и если начать вдаваться в тонкости это дело затянется на огромное количество постов, поэтому тут мы закончим с реверсами.
И перейдем к колес и тормозов.
На основных стойках устанавливаются гидравлические дисковые тормоза и большЫе и красивые колеса
На следующем фото на нас глядит стойка, с которой сняты колеса, а тормоза находятся на своих местах. Каждый прикручен 8 болтами к специальным фланцам на оси
Тормоз состоит из упорной плиты, корпуса, гидроблока, роторных дисков и статорных дисков.
Вот такой(который длинный). Это сосуд, в котором есть гидравлической жидкости, и есть азота, чтобы на нее давиь и выдавливать в тормоза. Манометр показывает давление в аккумуляторе, кроме того инликация есть в кабине пилотов
На этом думаю достаточно, и без того довольно много информации.
Задавайте свои ответы, буде разгребать сумбур.
Все картинки взяты из интернета, баянометр ругался на отдельные.
А почему не предупредил, что в тексте будут спойлеры?
Описано неплохо. Но пара ляпов.
Больше интересуют функции кв 9 на Л 39
Перед посадкой я особенно очкую, когда самолет выпускает всю аэротормозную хрень, скорость ощутимо падает, такое чувство, что самолет щас вообще остановится и ухнет вниз)))
16 поршневые 8 дисковые тормоза. даааа.
Самолет взлетает, летит, садится и тормозит исключительно чудом!
все доходчиво и понятно даже для гуманитариев!
Всем фанатам авиации (закрыто)
Срочно отдам (или выкину завтра 28.11) QRH и фулл сет плакатов по Боинг 737. Санкт-Петербург/ самовывоз.
У одного из «Стрижей» выскочил тормозной парашют в полете
Проверявшему системы Boeing 737 MAX предъявили обвинения в мошенничестве
Соответствующее сообщение опубликовано в четверг на сайте Министерства юстиции США.
Две катастрофы за полгода. Чем крушение лайнера 737 MAX 8 обернулось для Boeing
Согласно обвинительному заключению, Форкнер предоставил подразделению Федерального авиационного управления США (ФАУ) по оценке воздушных судов (Aircraft Evaluation Group, AEG) «по существу ложную, неточную и неполную информацию» о системе улучшения характеристик маневренности MCAS самолета Boeing 737 MAX. В связи с этим в руководствах по эксплуатации самолетов и в учебных пособиях для пилотов не содержалось какой-либо информации об указанной системе.
Форкнеру предъявлены обвинения в мошенничестве по шести пунктам. Ожидается, что впервые он предстанет перед судом в пятницу. Если вина Форкнера будет доказана, то ему грозит тюремное заключение сроком до нескольких десятков лет.
Ранее газета The Wall Street Journal со ссылкой на источник сообщала, что пилот компании Boeing Марк Форкнер, осуществлявший проверку программного обеспечения самолета Boeing 737 MAX, мог умышленно ввести в заблуждение авиарегулятор США (FAA). По мнению следователей, он мог умолчать об ошибках, выявленных при тестировании системы контроля полетов, что привело к крушению самолетов этой серии и, как следствие, гибели людей.
Эксплуатация Boeing 737 MAX была приостановлена после двух катастроф. 10 марта 2019 года в Эфиопии разбился Boeing 737 MAX 8 авиакомпании Ethiopian Airlines, погибли 157 человек. 29 октября 2018 года жертвами катастрофы самолета аналогичной модели компании Lion Air в Индонезии стали 189 человек. Руководство Boeing признало впоследствии, что в обоих случаях на борту воздушных судов перед тем, как они разбились, имел место сбой в работе системы MCAS. После этого многие страны, включая Россию, США и государства Евросоюза, по соображениям безопасности приостановили эксплуатацию самолетов данной серии.
Как устроена система шасси и тормозов пассажирского самолета
Всем привет. В продолжение темы описания авиационных систем «для чайников» (тут и тут), я подготовил новый текст про шасси и колёсные тормоза самолётов.
Параграф добавлен после прочтения комментариев: Прежде чем продолжить, хочу уточнить, что основной моей специализацией является бортовое радиоэлектронное оборудование, а не отдельные системы самолёта. Соответственно «чайникам» я тоже рассказываю «усеченную» картину мира, достаточную для их работы. Мне кажется, что эти материалы могут быть интересны и более широкому кругу читателей. При этом на полноту освещения рассматриваемой темы не претендую. Так что не стреляйте в пианиста, он играет как умеет. 🙂
Система колёс, на которые опирается самолёт при движении по земле, называется шасси. В современных авиалайнерах используется трёхстоечная система шасси с двумя основными стойками, расположенными под крылом позади центра тяжести и одной передней стойкой, расположенной в носу самолёта. Основные стойки шасси оснащаются тормозами, а передняя стойка делается поворотной, чтобы самолет мог маневрировать при движении по земле.
1. Поворотная носовая стойка
Кроме распределения веса самолета, носовая стойка поворачивается влево-вправо, чтобы самолет мог маневрировать при движении на земле.
Поворотом носовой стойки можно управлять двумя способами:
Управление поворотом носовой стойки с помощью педалей осуществляется на разбеге при взлёте и пробеге при посадке, когда скорость самолета достаточно велика. Одновременно, с помощью этих же педалей, летчик управляет отклонением руля направления.
картинка кликабельная
Предел отклонения носовой стойки при управлении от педалей специально ограничен, как правило это 10 градусов. Поворачивать на рулёжные дорожки, когда надо отклонять носовую стойку на углы порядка 50-70 градусов, не получится. На малых скоростях для руления используется ручка управления носовой стойкой.
Эта ручка используется только при рулёжке и автоматически отключается при больших скоростях движения.
картинка кликабельная
2. Основные опоры шасси и Колёсные тормоза
Основные опоры шасси представляют собой тележку, на которую навешиваются колеса, оснащённые тормозами.
Тормоза на самолёте похожи на автомобильные, только существенно мощнее, что не удивительно, т.к. им приходится тормозить машину массой 30-600 тонн со скоростей порядка 250 км/ч до нуля на ограниченной по длине взлётно-посадочной полосе (ВПП).
Самолётные тормоза состоят из «бутерброда» тормозных дисков и колодок.
В комментариях уточнили, что статическая часть тормозов в нашем случае тоже называется дисками. В разговоре с профильными специалистами я всегда слышал про «колодки». Возможно это жаргонизм, но на описание системы «для чайников» это влияет мало. В любом случае принцип действия тот же, что и в автомобильных тормозах, а реализация гораздо более мощная.
Колёсные тормоза могут быть задействованы двумя разными способами: «вручную» и автоматически.
«Вручную» пилот тормозит педалями. Может возникнуть вопрос, как пилот умудряется педалями и носовой стойкой управлять и тормозить? Дело в том, что педали самолёта устроены совсем не так, как в автомобиле. Управление по направлению выполняется перемещением педалей вперёд-назад. При этом две педали двигаются синхронно: левая вперёд-правая назад и наоборот. Управление тормозами осуществляется нажатием на педаль. Каждую педаль можно нажимать отдельно, так называемое дифференциальное торможение — это ещё один из способов управления направлением движения по земле. Если левым тормозом пользоваться интенсивнее, чем правым, то и самолёт будет разворачивать влево и наоборот.
Автоматический режим торможения включается сам при наступлении определенного события. Таких событий может быть два:
Активировать/деактивировать режим автоторможения в самолётах Airbus и SSJ-100 лётчик может с помощью одной из четырёх кнопок под ручкой уборки-выпуска шасси (В Boeing для этого используется переключатель). Три кнопки (LOW, MED, MAX) соответствуют различным интенсивностям торможения при посадке, а четвертая (RTO) активирует режим прерванного взлёта.
С автоторможением при посадке всё очевидно. Давайте рассмотрим режим прерванного взлёта.
Прерванный взлёт — это режим, когда экипаж решает прекратить взлёт по причине существенного отказа. Прервать взлёт можно только до достижения «скорости принятия решения». Скорость принятия решения зависит от длины и состояния поверхности ВПП и рассчитывается исходя из возможности затормозить, не выкатившись за пределы ВПП. Если в процессе набора скорости неисправность происходит после достижения скорости принятия решения, экипаж продолжит взлёт, что бы не случилось. Если до — будет тормозить.
Перед каждым взлётом экипаж обязан активировать автоторможение. Скорость начала и интенсивность торможения при прерванном взлёте напрямую влияет на то, выкатится ли самолёт за пределы полосы или нет. Активированное автоторможение гарантирует, что торможение начнётся немедленно после вывода двигателей из взлётного режима.
Если прерывать взлёт приходится при максимальной взлётной массе и на предельной скорости, то несмотря на то, что кроме колёсных тормозов экипаж задействует реверс и воздушные тормоза, энергия, которую должны поглотить тормоза, разогревает их так, что они начинают светиться не хуже лампочки. После полной остановки самолёта работа тормозов не заканчивается. Они должны выдержать ещё не менее 90 секунд, прежде чем подожгут стойки шасси. По нормативам, что за 90 секунд к самолёту подоспеет пожарная команда, которая всегда дежурит в аэропортах (и успевает!).
Спасибо комментариям — напомнили об одной очень важной функции тормозов авиалайнера: антиблокировочной системе (АБС). Основное отличие АБС самолёта от таковой автомобиля заключается в последствиях блокировки колёс: если у автомобиля блокировка приводит к снижению управляемости и увеличению тормозного пути, то заблокированные колёса самолёта при посадке просто взрываются от трения об асфальт. А без покрышек основных стоек торможение не будет ни эффективным ни безопасным. Так что АБС на самолёте неотключаемая и довольно критическая функция.
3. Уборка — выпуск шасси
Кроме тормозов и управления носовой стойкой с шасси связана ещё одна важная функция — уборка/выпуск шасси. Управление уборкой-выпуском шасси в нормальном режиме осуществляется с помощью соответствующей ручки на приборной панели.
Для улучшения аэродинамических свойств ЛА ниши, в которых размещаются убранные шасси, закрываются створками, поэтому процедура нормальной уборки шасси выглядит примерно так:
Весь процесс занимает 20-40 секунд. Если в процессе что-то идёт не так, то система прерывает процесс, т.к. есть вероятность что-то сломать. Нормальный выпуск шасси происходит в обратном порядке.
На случай неисправностей в системе уборки-выпуска предусмотрен особый порядок выпуска шасси — аварийный выпуск. Аварийный выпуск активируется кнопкой аварийного выпуска, расположенной под колпачком рядом с ручкой уборки-выпуска шасси. При аварийном выпуске средствами, не зависящими от вычислителя системы уборки-выпуска шасси, снимаются замки убранного положения стоек шасси и створок. Шасси вываливается под собственным весом. Массы каждой из стоек достаточно чтобы выломать створку, даже если та не откроется сама. На замки нижнего положения стойки также встают под действием собственного веса.
4. Датчики обжатия стоек шасси
Информация об обжатии стоек шасси, которые я упоминал выше, это очень нужная многим системам информация. Пожалуй, стоит перечислить кое-какие функции, зависящие от этого сигнала:
При появлении сигнала обжатия шасси:
При снятии сигнала обжатия шасси:
Параграф добавлен после прочтения комментариев: Датчики обжатия стоек шасси как правило выполняются многоканальными и располагаются на каждой из стоек. Данные с многочисленных датчиков собираются специальными устройствами, концентраторами данных. На основании полученных данных формируются сигналы об обжатии каждой из стоек и сигнал обжатия всех стоек. В логике работы описанных выше функций используются разные сигналы: для начала автоторможения достаточно сигналов обжатия двух основных стоек, а для включения режима тех. обслуживания надо чтобы были обжаты все три стойки. Но это уже другая история.
Бонус
Пока я готовил этот текст, решил для себя разобраться, почему на некоторых самолётах, например Boeing 757 тележка основных стоек шасси в полете наклонена так, что передние колёса находятся выше задних:
А на Boeing 767 наоборот, передние колеса ниже задних:
Как выяснилось всё дело в том, как спроектирована ниша, куда убираются стойки шасси, спасибо видео:
И, что самое любопытное, в военно-транспортном C5 Galaxy основные стойки шасси выпускаются в положении поперёк движения самолёта и только потом разворачиваются на 90 градусов в нужное положение.
Как приземляются самолеты: причины катастроф при посадке
Сразу хочется оговориться, что данная статья ни в коей мере не имеет своей целью заразить кого-либо аэрофобией. Серьезные авиационные происшествия, тем более с жертвами, мгновенно попадают в заголовки мировых новостей, и это лучшее свидетельство тому, что авиатранспорт отличается высокой степенью безопасности: катастрофа самолета — событие редкое и не рядовое. Тем интереснее разобраться в том, что происходит, когда ни напичканная электроникой современная авиатехника, ни высокая квалификация экипажей не спасают от ситуаций вроде той, что несколько лет назад испортила предновогоднее настроение жителям нашей страны. Речь идет о гибели лайнера Ту-204 — того, что 29 декабря 2012 года не смог погасить скорость после посадки, выкатился за пределы полосы, пробил ограждение аэродрома и разрушился с частичным выносом обломков на Киевское шоссе. Выкатывание самолета за пределы полосы — одна из самых распространенных в мире причин авиакатастроф (то есть авиапроисшествий с человеческими жертвами), порой его называют «убийцей номер один» в гражданской авиации. По статистике IATA (International Air Transport Association), примерно 24% погибших приходится на этот вид происшествий.
Тормозим в воздухе
Прежде чем говорить о причинах этих прискорбных событий, стоит немного остановиться на технической стороне вопроса, вкратце рассказать о том, какие у современного пассажирского лайнера есть возможности для своевременного и управляемого гашения скорости. Когда самолет находится в воздухе, есть лишь два основных способа снизить скорость лайнера: убрать газ, снизив мощность двигателей, и увеличить лобовое сопротивление. Для решения последней задачи существует несколько специализированных приспособлений. Опытные авиапутешественники знают, что крыло имеет большое количество движущихся частей, которые (за исключением элеронов — воздушных рулей крена) объединяются в понятие «механизация крыла». Отклоняющиеся под разными углами панели, которые отвечают за увеличение лобового сопротивления (а также снижение подъемной силы крыла), называются спойлерами. В отечественной авиационной литературе их принято подразделять на собственно спойлеры, интерцепторы и элерон-интерцепторы, в результате чего между этими понятиями возникает путаница. Как нам пояснили в одной из российских авиакомпаний, более правильным сегодня считается общий термин «спойлеры», которые на современных самолетах работают в трех режимах.
Первый режим — режим воздушных тормозов (speed brakes). Используется для уменьшения скорости полета и/или увеличения вертикальной скорости снижения. Управляет этим режимом пилот, перемещая штурвал или рукоятку на нужный угол, при этом отклоняются не все спойлеры, а лишь часть из них.
Второй режим — это совместная работа с элеронами для улучшения характеристик управления по крену (roll spoilers). Отклонение происходит автоматически на углы до семи градусов при соответствующем движении штурвала (ручки управления) по крену, причем отклоняются только внешние (те, что дальше от фюзеляжа) или только внутренние спойлеры (это зависит от конструкции конкретного типа воздушного судна).
Наконец, третий режим — наземного торможения (ground spoilers) — представляет для нас наибольший интерес. В этом режиме автоматически отклоняются все спойлеры на максимальный угол, что приводит к резкому снижению подъемной силы. После того как машину фактически перестает держать воздух, возникает эффективная нагрузка на тормозные колеса и начинается торможение с автоматом растормаживания. Этот автомат, называемый антиюзом, фактически не что иное, как антиблокировочная система, функционально аналогичная той, что в наши дни устанавливают на автомобили: ABS пришла из авиации.
Реверс? Можно без него
Кроме спойлеров, самолет располагает еще двумя системами гашения скорости. Во-первых, это уже упомянутые колесные тормоза. Они выполнены по дисковой схеме, причем для повышения износостойкости в них зачастую применяются диски не из стали, а из композиционных материалов (углепластика). Тормоза приводятся в действие гидравликой, хотя уже появились варианты с электрическими актуаторами.
И наконец, реверс — слово, столь часто звучавшее в связи с катастрофой во Внуково. В устройстве реверса тяги часть реактивной струи отклоняется с помощью приводимых в движение гидравликой створок. Таким образом, реактивная тяга уже не толкает самолет вперед, а, напротив, тормозит его. Так может ли быть неисправный реверс виновником катастрофы?
Ответ будет скорее отрицательным, ибо, как свидетельствует практика, единоличного «виновника» у серьезных авиапроисшествий в гражданской авиации вообще не бывает. Катастрофа — это всегда неудачное стечение нескольких обстоятельств, среди которых как технические факторы, так и человеческий. Дело в том, что устройство реверса тяги — это, по сути дела, система аварийного, нештатного торможения.
Западные типы самолетов, разумеется, оснащены устройствами реверса, но сертифицируются так, как будто его нет. Основное требование предъявляется к энергоемкости тормозов основных стоек шасси. Это означает, что при отсутствии ошибки пилотирования и при всех исправных системах самолет должен, не прибегая к реверсу, сесть на сухую полосу и без проблем погасить скорость, чтобы свернуть на рулежную дорожку. Более того, из-за повышенного уровня шума при отклонении струи во всех аэропортах Евросоюза применение реверса не разрешено при ночных полетах (23:00 — 06:00) за исключением плохого состояния ВПП и/или аварийной ситуации. Современные типы самолетов могут эксплуатироваться как с одним реверсом, так и вообще без них при условии достаточной длины ВПП, даже если она покрыта осадками. Иными словами, при стечении ряда неблагоприятных факторов, способствующих выкатыванию самолета за пределы ВПП, реверс может оказаться последней надеждой на благополучный исход. Но если откажет и он, вряд ли его можно будет считать единственной причиной авиапроисшествия.
Не спешите на посадку!
Одной из главных причин выкатываний самолета за пределы ВПП считается так называемый нестабилизированный заход на посадку. Это понятие включает в себя полет на предпосадочной прямой на повышенных скоростях, с неправильным положением механизации крыла (речь идет прежде всего о закрылках), с отклонением от курса. Среди других причин можно назвать позднее применение колесных тормозов (постулат пилота — «не оставляй тормоза на конец полосы!»). Известны также случаи, когда пилоты получали неточные данные о состоянии ВПП и совершали посадку на скользкую полосу, рассчитывая сесть на сухую.
Что происходит, когда самолет движется по глиссаде с превышением заданной (обычно 220 км/ч) скорости? Обычно это означает перелет, касание полосы в нерасчетной точке (особенно если самолет пустой, как это было с Ту-204). Это уже само по себе составляет нештатную ситуацию, которая предполагает использование всех средств торможения, включая реверс, — «запаса» полосы уже нет. Но опасность заключается еще и в том, что лайнер даже после касания полосы продолжает двигаться с нерасчетной высокой скоростью, а чем выше скорость, тем выше подъемная сила крыла. Получается, что машина не катится по полосе, опираясь на нее, а фактически летит, касаясь полосы колесами. В этой ситуации могли не сработать датчики обжатия стоек шасси, которые по-английски называются более понятным термином weight-on-weels (вес на колесах). Таким образом, с точки зрения автоматики, лайнер продолжает полет и не может выполнять такие чисто наземные операции, как включение реверса или выпуск спойлеров в режиме наземного торможения. А если после касания полосы спойлеры не выпустятся или уберутся, катастрофа практически неминуема. Более того, при слабом сцеплении колес с полосой автоматика антиюза будет растормаживать колеса, как она делала бы это на скользкой поверхности, чтобы избежать потери управления колесами. Тормоза будут работать исправно, но. тормозить они не будут. Ну и если полоса еще действительно скользкая, то шансы избежать выкатывания в описанном случае можно считать практически нулевыми. Последствия же выкатывания зависят от того, на какой скорости это происходит и что оказалось на пути самолета. Таким образом, обстоятельства, ведущие к катастрофе, могут нарастать лавинообразно, и отказ, скажем, реверса не может в данной ситуации иметь решающего значения.