жидкий алюминий что это
Жидкий металл в качестве термоинтерфейса, все за и против
В последнее время все большую популярность приобретает применение в компьютерной технике в качестве термоинтерфейса жидкого металла.
реклама
Но давайте разберемся, все ли так хорошо, как нас убеждает производитель этого «волшебного зелья» и его фанаты.
Да! Несомненно у жидкого металла есть большой плюс, это его теплопроводность, она выше, чем у хорошей термопасты в 7-10 раз. И на практике применение жидкого металла позволяет в некоторых случаях снизить температуру чипа до 20%.
реклама
Для наглядности показатели теплопроводности для термопаст и жидкого металла привел в таблице.
Но на этом все. Дальше одно разочарование. Все по порядку.
Жидкий металл состоит (является сплавом) из трех основных элементов: галлий-индий-олово (62, 25 и 13% соответственно), с некоторыми небольшими дополнительными присадками в зависимости от «волшебных рецептов» разных производителей с температурой плавления в районе 5 °С.
реклама
Взаимодействие с алюминием даже не будем рассматривать, так как сам производитель категорически запрещает применять жидкий металл на алюминиевых поверхностях, к слову алюминий при взаимодействии с жидким металлом разрушается прямо на глазах. А рассмотрим взаимодействие с медью, с которым производитель как раз и рекомендует использовать жидкий металл, и поверхностью кристаллов чипов.
Для начала взглянем на поверхность медного радиатора после его интенсивного использования с жидким металлом в течении полугода.
Жидкий металл перешел в твердое состояние, снятие его было произведено с усилием, так как он «прикипел» к поверхности кристалла.
реклама
Так что же произошло с жидким металлом?
Все таки разрушающая химическая реакция с медью происходит, пусть и достаточно медленно, по причине которой значительно снижается теплопроводность этого термоинтерфейса и увеличиваются температуры чипов.
Химики так же говорят, что устранить подобное явление поможет никелирование меди, но не все медные радиаторы имеют никелированную поверхность.
Теперь разберемся как влияет жидкий металл на поверхность кристаллов чипов. На фото представлено фото поверхности кристалла процессора, который несколько лет эксплуатировался с жидким металлом.
Как видно и здесь происходят химические реакции, которые постепенно разрушают поверхность кристалла чипа.
Кстати разрушающее воздействие жидкого металла касается еще и паяных соединений, вступив в контакт с припоем, он сделает его хрупким, а пайку ненадежной, и в какой-то момент это сработает.
Представьте такую ситуацию: вы в ноутбуке заменили термоинтерфейс на жидкий металл, выдавили его немного больше, чем нужно было. При установке системы охлаждения излишек выдавился из-под процессора, или графического чипа, и волшебная капелька зависла в ожидании какого ни будь резкого толчка или небольшого падения (с высоты 2 см.) вашего ноутбука. А такие случаи имели место быть. И здесь начинается путешествие это волшебной капли по вашему ноутбуку. И что случится раньше? Замкнет SMD компоненты на подложке процессора, замкнет, какие-либо другие компоненты, или же просто прилипнет к какому-нибудь месту пайки и через некоторое время разрушит ее.
Поэтому лично я бы держал жидкий металл как можно дальше от любой электроники.
Плавка алюминия в домашних условиях: пошаговая инструкция. Технология плавки алюминия в домашних условиях
Алюминий – один из самых распространенных металлов на земле. Он присутствует даже в человеческом организме, так что уж говорить об окружающей действительности. В каждом доме или личном автомобиле есть алюминиевые функциональные элементы, детали или узлы, которые, увы, достаточно часто ломаются. Это мебельная и оконная фурнитура, направляющие для дверей и ставен, защелки замков и другие нужные мелочи.
Их можно заменить покупными новыми изделиями, отремонтировать или изготовить самостоятельно. В последних двух случаях и может понадобиться плавка алюминия в домашних условиях.
Характеристики алюминия
Все характеристики металла для домашних самоделок знать необязательно. Но есть несколько моментов, которые могут стать значительными или даже опасными в работе.
Алюминий хорошо поддается литью, плавится при относительно невысокой температуре в 660 °С. Для справки: чугун начинает плавиться при температуре 1100°С, а сталь – 1300 °С.
Поэтому плавка алюминия в домашних условиях на газовой плите трудно осуществима, так как домашние газовые приборы такую температуру обеспечить не могут. Правда, отечественные «кулибины» могут все, но об этом позже.
Сырье для плавки
Если предстоит плавка алюминия в домашних условиях, из-за сложности работы с порошковым металлом его в качестве сырья не используют.
Можно приобрести алюминиевую чушку или использовать обычную алюминиевую же проволоку, которую нарезать ножницами на небольшие кусочки и для уменьшения площади контакта с воздухом плотно спрессовать пассатижами.
Если не предполагается особо высокое качество изделия, то можно в качестве сырья использовать любые бытовые предметы, консервные банки без нижнего шва или обрезки профиля.
Вторичное сырье может быть окрашено или испачкано, это не страшно, лишние составляющие отойдут в виде шлаков. Только нужно помнить, что вдыхать пары сгоревшей краски нельзя.
Чтобы из вторичного сырья получилась качественная плавка алюминия в домашних условиях, флюсы, задача которых состоит в том, чтобы связывать и выводить на поверхность расплавленного металла все примеси и загрязнения, лучше приобрести готовые. Но можно сделать самостоятельно из технических солей.
Покровный флюс готовится из 10 % криолита и по 45 % хлорида натрия и хлорида калия.
В рафинирующий флюс для получения алюминия без пористости добавляют еще 25 % от общей массы фтористого натрия.
Средства индивидуальной защиты при плавке
Глаза тоже желательно защищать, особенно если плавка происходит достаточно часто, очками или маской. И совсем в идеале работать нужно в специальном костюме металлурга с повышенной стойкостью к огню и высоким температурам.
Если нужен очень чистый алюминий с использованием рафинирующего флюса, то работать следует в химическом респираторе.
Литейная форма
Если требуется только отлить чистый алюминий для припоя, то литейная форма не нужна. Достаточно использовать стальной лист, на котором расплавленный металл остынет. Но если нужно отлить хотя бы простенькую деталь, то понадобится литейная форма.
Литейную форму можно сделать из скульптурного гипса, именно гипса, а не алебастра. Жидкий гипс заливается в смазанную маслом форму, ему дают немного застыть, периодически встряхивая, чтобы вышли пузырьки воздуха, вставляют в него модель и накрывают второй емкостью с гипсом. В удобном месте нужно в гипс вставить цилиндрический предмет, чтобы в итоге в форме появилось отверстие, так называемый канал, в который будет заливаться расплавленный алюминий. Когда гипс окончательно застынет, две части формы разъединяются, вынимается модель, и форма с готовым слепком соединяется опять.
Изготовить литейную форму можно и из смеси 75 % формовочного песка, 20 % глины и 5 % каменноугольного песка, которая засыпается в специальный ящик из досок и трамбуется. В утрамбованную землю отжимается модель, получившийся отпечаток присыпается тальком и графитом (угольной пылью), чтобы остывшую алюминиевую деталь можно было легко отделить от формы.
Тигель для плавки
Плавка алюминия в домашних условиях требует наличия специальной емкости с носиком из тугоплавкого материала. Это так называемый тигель. Тигли могут быть фарфоровые, кварцевые, стальные, чугунные, изготовленные из корунда или графита. В домашних условиях можно использовать покупной тигель или изготовить его, например, из отрезка стальной трубы достаточно большого диаметра. Правда, для этого нужна болгарка, сварочный аппарат и навыки владения этими инструментами.
Печи для плавки
Технология плавки алюминия в домашних условиях достаточно проста. В специальном ковше нагревается лом алюминия до температуры, превышающей температуру плавления этого металла, расплав некоторое время выдерживается в разогретом состоянии, с его поверхности снимается шлак, затем чистый металл разливается в форму для остывания. Время плавки зависит от конструкции печи, то есть той температуры, которую она способна обеспечить.
Если используется паяльная лампа или газовая горелка, то они нагревают алюминий сверху. Правда, печь при этом все равно складывается из кирпичей колодцем без связующего раствора, внутри которого будут прогорать угли для нагревания емкости снизу и поддержания ее в нагретом состоянии.
Примерно так же выглядит конструкция печи, если тигель прогревается снизу с помощью обычных дров и фена для сушки волос. Только в этом случае дрова укладываются в кирпичном колодце не на дно, а на решетку, расположенную на первом ряду кирпичей, а в этом ряду оставляется отверстие для металлической трубы, надетой на горловину фена и закрепленной на ней изолентой. Тиглем в этом случае служит консервная банка, естественно, не алюминиевая, в которой на небольшом расстоянии от верха проделываются диаметрально противоположные сквозные отверстия. В эти отверстия продевается стальной прут, за который банка должна подвешиваться в печи. Фен нужен для нагнетания горячего воздуха в пространство между кирпичами и тиглем. Иногда вместо кирпичей используют металлическую бочку.
Если плавка должна происходить достаточно часто, то можно своими руками изготовить муфельную печь с вертикальной загрузкой тигля или купить готовую.
Плавка с помощью паяльной лампы
Плавка алюминия в домашних условиях паяльной лампой должна происходить не в помещении. Кроме сырья, паяльной лампы, тиглей и кирпичей, нужно подготовить дрова, пассатижи и стальной прут.
Итак, из кирпичей изготовлен небольшой колодец так, чтобы сверху можно было установить ковш с алюминием и стальной небольшой лист. В колодце разжигается костер, который должен немного прогореть, чтобы образовались угли. Дальше и происходит, собственно, плавка алюминия в домашних условиях. Пошаговая инструкция процесса:
— На кирпичи устанавливается емкость с сырьем. Ее нужно греть примерно 15 минут.
— После этого на полную мощность включается горелка паяльной лампы и алюминий прогревается сверху.
— В течение нескольких секунд начинается процесс, но для того чтобы прогрев был равномерным, металл в емкости нужно аккуратно перемешивать стальным прутом, придерживая ее пассатижами (не забыв при этом надеть рукавицы). Можно обойтись и без прута, периодически встряхивая ковш с помощью тех же плоскогубцев, но очень осторожно.
— Когда жидкость становится однородной, нужно пассатижами взять емкость и вылить содержимое на прокаленный стальной лист таким образом, чтобы вся образовавшаяся окалина осталась в ковше, а на лист для застывания попал только чистый металл.
Так обычно из вторичного сырья получают чистый алюминий, если с его помощью нужно запаять алюминиевые детали.
Плавка на дровах или газе
Плавка алюминия в домашних условиях на дровах происходит в легких разборных печах. Минусом такого способа является неконтролируемость процесса. Увеличить или уменьшить температуру нагрева невозможно. Вмешаться в процесс возможно, только сняв емкость с алюминием с огня.
Эта емкость кверху дном надевается на тигель. Такая конструкция и позволяет прогревать алюминий. Периодически верхнюю емкость нужно снимать и металлическим прутом или ножом перемешивать лом. Перед тем как слить расплавленный металл, с его поверхности нужно снять шлак.
Плавка алюминия в муфельной печи
Муфельная печь – это уже достаточно серьезное оборудование для получения качественного расплавленного металла. Поэтому при плавке используют флюс для очистки алюминия от примесей. И это уже почти производственный процесс, а не плавка алюминия в домашних условиях. Пошаговая инструкция включает еще и несколько пунктов по подготовке сырья:
Так что не стоит заранее пугаться, если предстоит в домашних условиях расплавить алюминиевый лом, чтобы получить чистый металл или изготовить деталь взамен поломавшейся. Серьезные профессиональные навыки для организации такого литейного производства совсем не нужны. Желание и умелые руки обычного мастера-любителя способны творить чудеса.
Жидкий металл: подводные камни. Взгляд глазами химика
Написать эту статью меня сподвиг пост NotSlow Не так страшен жидкий металл. Там все просто: подстраховался от замыкания, нанес тонким слоем, прикрутил и радуйся низким температурам. Но так ли все хорошо на самом деле?
Для начала нужно выяснить, что это за жидкий металл такой. Среди чистых металлов единственный, который может быть жидким при комнатной температуре — это ртуть. В здравом уме никто сейчас не станет применять ртуть в качестве термоинтерфейса из-за ее крайней токсичности и испаряемости. Два других становятся жидкими уже при температуре человеческого тела — это цезий и галлий. Цезий — это «фтор наоборот» по своей химической активности, он возгорается и взрывается от малейших следов воздуха и влаги и даже разрушает стекло. Остается галлий (на КПДВ именно он). При комнатной температуре галлий все же твердый, однако с некоторыми другими легкоплавкими металлами он образует эвтектики, плавящиеся при 20,5°С (галлий-олово) и даже 15,3 °С (галлий-индий). Еще ниже — в районе 5 °С — плавится тройная эвтектика галлий-индий-олово (62, 25 и 13% соответственно). Имеющиеся в продаже термоинтерфейсы типа «жидкий металл» — это как раз и есть сплавы на основе этих трех элементов, возможно с некоторыми дополнительными присадками.
Исходя из этого, ясны и подводные камни. Первый из них — это абсолютная несовместимость галлийсодержащих сплавов с алюминием!
Во времена, когда уроки химии в школе непременно сопровождались демонстрацией опытов, был среди них и опыт по амальгамированию алюминия. Алюминий покрывали слоем ртути и он тотчас начинал бурно окисляться, рассыпаясь прямо на глазах. Ртуть защищала алюминий от образования оксидного слоя и он образовывался уже на поверхности амальгамы, но не был способен остановить окисление, так как на поверхности жидкости он не удерживался сплошным слоем, растрескивался, и в трещинах открывалась свежая, неокисленная поверхность амальгамы.
Ровно так же действует и галлиевый сплав с той только разницей, что он способен буквально пропитывать алюминий насквозь, проникая в межкристаллитные промежутки. Алюминий, пропитанный жидким галлием, не только окисляется на глазах, но еще и крошится в руках.
Так что ЖМ следует держать от алюминия подальше. И это касается не только алюминиевых радиаторов: случайная капелька «жидкого металла» может уничтожить и корпус ноутбука, если тот из алюминиевого сплава, и любую другую алюминиевую деталь. Хотя бы корпус какого-нибудь конденсатора. Причем капелька эта является классическим катализатором — делает свое черное дело, не расходуясь сама.
Но и медь к галлию небезразлична. На рисунке выше я привел T-x диаграмму системы медь-галлий (из справочника «Диаграммы состояния двойных металлических систем» под ред. Лякишева), на которой видно бесчисленное множество интерметаллических соединений. Как только галлий вступит в контакт с медью, они тут же начинают образовываться. Жидкий галлий (к его сплавам это тоже относится) вообще очень охотно смачивает и металлы, и неметаллы, а явное химическое сродство этому крайне способствует. Так что «жидкий металл» будет просто впитываться в медь, образуя на границе между металлами корку интерметаллидов. Последние не являются металлами с физической точки зрения, они тугоплавки, хрупки и обладают плохой тепло- и электропроводностью, но главное — «жидкий металл» будет расходоваться на их образование и просто уйдет из зазора. Многие из тех, кто пробовал в деле ЖМ, сообщают, что со временем он перестает работать, и сняв радиатор, они обнаружили, что жидкий металл «испарился». Испариться он не мог — заметное давление пара у его компонентов появляется только свыше тысячи градусов — он просто впитался в медь, прореагировал с ней. Устранить это явление помогает никелевое покрытие на меди, хоть оно и является дополнительным препятствием для тепла.
Кстати, впитываемость галлия и его сплавов в металлы еще касается паяных соединений — помните про ту маленькую капельку, которая может разрушить алюминиевый корпус? Так вот, такая же капелька, попавшая на припой, сделает и его хрупкой, а пайку ненадежной. В какой-то момент это «сработает». Поэтому лично я бы держал «жидкий металл» как можно дальше от любой электроники.
И последнее, о чем следовало бы написать: «жидкий металл», увы, небезвреден. Галлий по некоторым данным сравним по токсичности с мышьяком, второй его компонент, индий — также является токсичным тяжелым металлом. В отличие от ртути сплавы на основе галлия все же абсолютно нелетучи при обычной температуре, так что отравиться их парами не получится, однако из-за своей способности легко прилипать ко всему на свете эти сплавы невероятно мазучие. Испачкать ими, к примеру, руки — легче легкого, а отмыть их до конца очень сложно. Потом это все попадет в рот. Поэтому — работаем с «жидким металлом» и всем, что с ним контактировало только в резиновых перчатках и отдельно от еды, питья и курения. И да, никогда не делайте так, как на КПДВ!
Жидкий металл, или Как превратить любую поверхность в металлическую?
Казалось бы, довести латунь, медь или бронзу до текучего состояния можно лишь в доменной печи. Но разработчикам жидкого металла удалось добиться невозможного. В нашем распоряжении появился материал, который можно наносить, как краску, превращая любые твердые предметы в металлические. В буквальном смысле слова.
До недавней поры «металлизировать» поверхность можно было лишь при помощи красок. И нельзя сказать, что этот способ плох. Имитация меди, бронзы, стали и даже золота бывают столь достоверными, что даже придирчивый зритель не распознает подделку. У окрашивания есть только один недостаток — недолговечность. Насыщенное пигментом покрытие зачастую стирается от легкого прикосновения, и очень скоро его приходится в лучшем случае обновлять, а в худшем — переделывать.
Ситуация в корне изменилась, когда на рынке появился так называемый жидкий металл. Разумеется, это не ртуть, не термопаста и не пришедший из будущего терминатор Т-1000. Речь идет о декоративном покрытии, которое на 95% состоит из тончайшей металлической пыли. Остальные 5% приходятся на композитное связующее, которое обеспечивает отделочному слою удивительную прочность.
Да, жидкий металл куда более износостоек, чем самая прочная краска. Сила его сцепления с подложкой настолько велика, что поверхность можно не только шлифовать и полировать, но даже наносить на нее гравировку.
Справедливости ради стоит отметить, что покрытие является металлическим как в хорошем, так и в плохом смысле слова. Со временем поверхность может окислиться, покрыться патиной или попросту заржаветь, если оставить ее без соответствующего ухода. И если естественное старение не входит в планы декоратора, нужно воспользоваться обычными защитными лаками для металла.
Жидкий металл обладает всеми характеристиками литого изделия. Это касается не только цвета, блеска и текстуры, но также теплопроводности, магнитных свойств и проч.
При помощи жидкого металла можно отделать любую прочную твердую поверхность. Покрытие выпускается во множестве вариантов — медь, бронза, латунь, серебро, золото и т.д.
Декораторы быстро «распробовали» этот удивительный материал и уже довольно активно используют его в отделке интерьера, украшая стены, потолки, лепнину и мебель. Да и для наружных работ нет никаких противопоказаний, главное — не забывать про антикоррозийную защиту.
Но можно ли назвать жидкий металл материалом без недостатков? К сожалению, нет. Первый и основной минус — высокая цена. Так, за упаковку весом 1 кг, от зарубежного производителя, придется заплатить около 8000 руб. Впрочем, в последнее время на нашем рынке появились отечественные аналоги, которые стоят почти в два раза дешевле.
Также стоит отметить, что жидкий металл нельзя назвать безопасным и экологически чистым продуктом. После затвердевания он становится нейтральным, но сам процесс смешивания компонентов сопровождается довольно активной химической реакцией. И чтобы обезопасить себя, необходимо использовать защитные перчатки и респиратор. Впрочем, процесс отделки стоит рассмотреть подробно.
Технология нанесения
Как уже говорилось выше, жидким металлом можно покрыть любую твердую плотную поверхность. Но перед отделкой ее необходимо тщательно очистить от пыли, жира и других загрязнений, а потом воспользоваться грунтом. И если отделке подлежит гладкий предмет, от которого нужно добиться зеркального блеска, грунт желательно отшлифовать мелкой наждачной бумагой и еще раз тщательно обеспылить.
Если пренебречь подготовительной работой, жидкий металл будет ложиться неровно, образуя потеки. А это приведет к перерасходу недешевого материала
Следующий этап — приготовление отделочного состава. Очень важно смешивать компоненты в строжайшем соответствии с пропорциями, которые указаны производителем. Если нарушить их, жидкий металл затвердеет слишком быстро, или же не затвердеет совсем.
Если покрытие будет наноситься шпателем или кистью, достаточно смешать наполнитель и отвердитель. В результате образуется постепенно густеющая паста, которая может ложиться немного неровно. Следы мазков убирают уже после затвердевания жидкого металла при помощи нескольких 3-5 видов наждачной бумаги разной степени зернистости, двигаясь от крупной фракции абразива к мелкой.
Утомительной шлифовки можно избежать, если наносить металл краскопультом. Но в этом случае покрытие нужно развести, сделав максимально жидким и текучим. Для этого существует специальный разбавитель. Когда и в каких пропорциях нужно его добавлять, указано в инструкции производителя.
Жидкий металл наносят в несколько этапов, по технологии «мокрое по мокрому», то есть новый слой накладывают, не дожидаясь высыхания предыдущего
Толщина покрытия варьируется в среднем от 0,1 до 2 мм. После нанесения по той или иной технологии покрытие нужно оставить до полного затвердевания, которой составляет обычно 24 часа. И заключительный этап — полировка. Для этих целей можно использовать металлическую шерсть, мягкие абразивные губки, войлочные шлифовальные бруски и проч. А полировочные пасты для металла еще больше усилят благородный металлический блеск.
Большая Энциклопедия Нефти и Газа
Жидкий алюминий
Из плавильной печи жидкий алюминий через заливочный карман подается в электропечь. После окончания заливки карман закрывают крышкой. Шлак с поверхности расплава удаляют скребками через окна. Расплавленный алюминий поступает в литейную машину через раздаточные летки. [31]
Вследствие разности плотностей жидкий алюминий отделяется от криолито-гли-ноземного расплава и собирается на дне ванны. В процессе электролиза в результате охлаждения ванны наружным воздухом на поверхности расплава образуется твердый слой электролита ( гарнисаж), который утепляет ванну и снижает расход энергии. Для извлечения из ванны расплавленного алюминия используют вакуумные ковши или сифоны, засасывающая труба которых вводится в жидкий алюминий через слой гарнисажа. [32]
Для предотвращения растекания жидкого алюминия сварку ведут в специальных приспособлениях с уплотнениями торцов швов угольными или керамическими брусками. [35]
При измерении уровня жидкого алюминия и электролита на ломике, вынутом из расплава, четко намечается граница между металлом и электролитом. Отсутствие такой границы свидетельствует, как правило, о повышенной температуре расплава. [36]
Он растворим в жидком алюминии и выделяется из него при охлаждении в виде желтых листочков. [38]
Растворимость водорода в жидком алюминии при температуре плавления составляет 0 69 см3 / 100 г ( рис. 5.13), что значительно меньше по сравнению с растворимостью водорода в железе, никеле, меди и титане. [40]
Окисной слой на жидком алюминии хотя и тонок, но очень вязок. Любая деталь, извлекаемая из ванны, будет покрыта полосками этого окисла или глобулами металла, завязшими в окисной пленке. Горячее алюминирование готовых ( формованных) изделий, по-видимому, уже не применяется ни в Англии, ни в других странах Европы. [41]
Вопрос о смачивании углерода жидким алюминием является основным при разработке углеалюминиевых композиционных материалов. [44]