жидкий кислород что это такое
Что такое жидкий кислород: общая информация
Кислород – самый распространенный элемент на планете. Он присутствует в воде, земной коре, воздухе и в организмах живых существ, активно участвуя во многих обменных процессах. В природе он обычно существует в виде газа, а в промышленности часто используется в качестве жидкости. Как ведет себя жидкий кислород? Какими свойствами он обладает и где используется?
Газ кислород
Кислород – один из важнейших элементов на планете. Он участвует в процессе дыхания, в метаболизме живых организмов, а также в круговороте веществ в биосфере. Кроме того, он способствует гниению и разложению органических остатков.
В нормальных условиях он является бесцветным газом, который не имеет вкуса и запаха. Он тяжелее воздуха и с трудом растворяется в воде. В химическом плане он очень активен и способен образовывать соединения практически со всеми элементами.
В свободном состоянии в виде молекул О2, состоящих из двух атомов оксигена, он находится в атмосфере. Благодаря такому строению элемент также называется «дикислородом», но он может существовать и в других вариациях. При определенных условиях его атомы могут образовывать «трикислород» с молекулой О3, которая представляет собой голубой газ озон со специфическим запахом.
В атмосфере содержание кислорода составляет примерно 21 % по массе, в земной коре его доля значительно выше и составляет около 47 % по массе. Элемент входит в состав более полутора тысяч разнообразных пород и минералов, большая часть из которых являются силикатами. Там он присутствует в виде соединений. В воде его содержание доходит до 85 %, и это не удивительно, ведь атомы оксигена и образуют воду вместе с элементом гидрогеном.
Жидкий кислород
В жидком состоянии кислород окрашивается в голубой оттенок и усиливает некоторые свойства газообразного вещества. Так, он ведет себя более агрессивно в химических реакциях, а также становится сильным парамагнетиком и может притягиваться магнитом.
Химические свойства
Газообразный кислород является окислителем. Сам по себе он негорюч, но хорошо поддерживает процесс горения, а при значительной концентрации и высоких температурах является взрывоопасным.
С активными веществами (например, щелочными металлами) он может вступать в реакции даже при комнатной температуре и при обыкновенной концентрации в воздухе, образуя с ними соединения оксиды. Результат хорошо виден на многих металлах, на которых он проявляется в виде коррозии.
Жидкий кислород также обладает сильными окислительными свойствами. Многие пропитанные им вещества легко воспламеняются и горят с выделением энергии и тепла. Хлопок, бумага, дерево, уголь и некоторые другие материалы могут взрываться.
Получение
Самым распространенным и легким в получении источником кислорода является воздух. К тому же он неиссякаем и присутствует в нашей жизни повсеместно. Чтобы получить из него необходимые вещества, его сжижают, а затем разделяют на жидкий азот и кислород.
Еще один способ получения жидкости – конденсация ее из газа. Для этого достаточно опустить медный змеевик в контейнер с жидким азотом, а затем пропустить через змеевик газообразный кислород. Температура азота ниже, чем у кислорода, поэтому, проходя по медной трубке, газ будет конденсироваться и превратится в жидкость. При этом на поверхности змеевика образуется небольшой слой снега.
Применение
Сегодня его чаще применяют в медицине, фармацевтике, в металлургии, стекольной, химической, бумажной и других видах промышленности. С его помощью получают различные полезные соединения, например окись титана, которая участвует в производстве лакокрасочных изделий, бумаги и пластмасс. При изготовлении стекла он нужен для поддержания жара в печах, а также для уменьшения количества окиси азота, попадающей в атмосферу. В космической авиации жидкий кислород является одним из компонентов ракетного топлива, где он используется в качестве окислителя, а в роли самого топлива выступает водород или керосин.
В медицине и фармацевтике без него тоже не обходится. Жидкий кислород входит в состав биореакторов, а также используется в качестве добавки к ферментам. В медицине он необходим для анестезии, приготовления кислородных ванн и коктейлей, лечения или облегчения состояния при интоксикации, астме и других недугах. Здесь он чаще всего не используется напрямую в виде жидкости, а является источником газообразного кислорода.
Хранение и меры предосторожности
Жидкий кислород не возгорается и не взрывается сам по себе, он не токсичен для человека и не вреден для окружающей среды. Однако активная реакция в химических процессах, а также криогенный эффект делают его не совсем безопасным веществом.
При работе с ним нужно держать подальше смазочные, горючие и легковоспламеняющиеся материалы, а также всегда использовать перчатки и спецодежду. Кислород очень низкой температуры легко повреждает кожу и может привести к обморожению, травмам и отмиранию живых клеток. Если жидкость покрывает значительную часть тела, все может закончиться даже летальным исходом.
Технический и медицинский жидкий кислород хранят сосудах Дьюара, которые делают преимущественно из стали или алюминия. Это цилиндрические контейнеры с двойными стенками, между стенками которых располагается вакуумная полость, а также теплоизоляционные материалы. Они работают по принципу термосов, хорошо сохраняя жидкости внутри.
Жидкий кислород — свойства и применение
Это бледно-синяя жидкость которая является одним из агрегатных состояний кислорода. Благодаря крайне низкой температуре и некоторым уникальным свойствам это вещество широко используется во многих сферах деятельности человека. Получают его из воздуха, который является главным и практически неисчерпаемым источником различных газов для промышленности.
Физические и химические свойства
К самым интересным физическим особенностям вещества можно отнести способность заметно повышать плотность при снижении температуры и парамагнетизм. Изменение плотности успешно используется при заправке ракетной техники так как позволяет не изменяя размера бака заполнить его большим количеством окислителя. За счет этого получается дольше поддерживать работу двигателя и выводить в космос больше полезных грузов.
Парамагнитные особенности этой жидкости изначально связывали с образованием четырехатомных молекул при сжижении. В настоящее время было установлено, что это не так, хотя молекулы и имеют тенденцию к попарному объединению на основании разнонаправленных спинов, устойчивых связей между ними не возникает.
Главная химическая особенность жидкого кислорода – крайне высокая способность к окислению. Попадая в него органика быстро сгорает с выделением больших объемов тепловой энергии. Причем часть таких веществ при пропитке жидким кислородом могут взрываться. Особенно характерен такой исход для взаимодействий с нефтепродуктами, например, асфальтом.
Иследования таких веществ, как жидкие газы невозможно без низкотемпературных сканирующих микроскопов, таких как микроскопы от Nanomagnetics Instruments — https://nanoafm.ru/produktsiya/nizkotemperaturnye-skaniruyushchie-zondovye-mikroskopy
Сфера применения
Чаще всего эту жидкость используют в таких целях:
Жидкий кислород
Жидкий кислород – это агрегатное состояние кислорода, в котором он представляет собой бледно-синюю жидкость. Он относится к категории веществ, которые одними из первых стали использоваться в разных областях промышленности. Жидкий О2 используется с двумя целями: для усиления процессов горения и для окисления химических процессов. Именно необходимость решения этих задач стала причиной популярности воздухоразделительного оборудования.
Физические свойства жидкого кислорода
В жидком состоянии кислород имеет бледно-голубой оттенок. При переливании из одной емкости в другую жидкий кислород выделяет водяные пары, поглощая тепло из окружающего воздуха. При этом температура воздуха резко снижается, что приводит к образованию тумана.
Этот вид кислорода способен закипать при температуре 183°С. Если в это время поместить его в среду, в которой температура воздуха составляет около 30-40°С, то кипение лишь усилится. При комнатной температуре жидкость быстро испаряется.
Для того чтобы снизить скорость испарения кислорода жидкого, его помещают в специальные баллоны. Баллон для хранения О2 представляет собой двухслойный сосуд. Внутренняя стенка баллона покрыта слоем серебра, а между ней и внешней стенкой полностью выкачан весь воздух. Слой серебра необходим для того, чтобы отражать тепло. В таком баллоне кислород может храниться на протяжении нескольких суток.
К другим физическим свойствам жидкого кислорода можно отнести следующие:
Как получают жидкий кислород?
После этого проводят ректификацию, то есть отделение азота от кислорода. Этого добиваются путем многократного нагревания жидкости, в ходе которого первым делом испаряется азот, а оставшаяся жидкость обогащается О2.
В каких областях используют жидкий кислород?
В настоящее время жидкому кислороду находится применение в разных областях промышленности:
Жидкий О2 служит в качестве сырья для получения других химических соединений, вроде двуокиси титана или окиси этилена. С его помощью также можно повысить производительность большинства окислительных процессов.
В стекольной промышленности кислород применяется для интенсификации процессов горения, необходимых для поддержания работы стеклоплавильных печей. Помимо этого, он помогает снизить выбросы оксида азота и увеличить эффективность стекольного производства.
С этой же целью жидкий О2 используется в металлургии, где он обогащает воздух и повышает эффективность процесса горения.
С жидким кислородом связано ускорение процессов роста клеток, поэтому в фармацевтике его добавляют в ферментеры и биореакторы.
В целлюлозно-бумажной отрасли промышленности с помощью этого вида кислорода осуществляется окислительное экстрагирование, обработка сточных вод и делигнификация (процесс получения целлюлозы).
Помимо этого, кислородом жидким пользуются в автомобилестроении и машиностроении, где он применяется в качестве вспомогательного газа во время лазерной резки. Его также добавляют в состав защитных газовых смесей.
Техника безопасности при работе с жидким кислородом
При работе с жидким кислородом нет угрозы отравления, но все же некоторые требования безопасности необходимо строго соблюдать:
Преимущества сотрудничества с НПК «Грасис»
Научно-производственная компания «Грасис» осуществляет поставки оборудования, которое позволит вам самостоятельно получать газообразный кислород из атмосферного воздуха.
Наша компания более 10 лет занимается разработкой и производством газо- и воздухоразделительного оборудования, а также инжинирингом, проектированием и выполнением комплексных работ «под ключ». Мы поможем вам решить любые задачи, связанные с газо- и воздухоразделением, утилизацией попутного нефтяного газа и подготовкой природного газа.
В процессе производства оборудования мы используем нанотехнологии и высококачественные комплектующие, благодаря которым улучшаются технико-эксплуатационные свойства продукции. Свяжитесь с представителями компании «Грасис», чтобы получить развернутую информацию о заинтересовавшей вас установке!
Жидкий кислород
Жи́дкий кислоро́д (ЖК, англ. Liquid oxygen, LOX ) — жидкость бледно-синего цвета, которая относится к сильным парамагнетикам. Является одним из четырёх агрегатных состояний кислорода. ЖК обладает удельной плотностью 1,141 г/см³ и имеет умеренно криогенные свойства с точкой замерзания 50,5 K (−222,65 °C) и точкой кипения 90,188 K (−182,96 °C). Жидкий кислород активно используется в космической и газовой отраслях, при эксплуатации подводных лодок, широко используется в медицине. Обычно промышленное получение основывается на фракционной перегонке воздуха. Коэффициент расширения (англ. expansion ratio ) кислорода при смене агрегатного состояния на газообразное составляет 860:1 при 20 °C, что иногда используется в системах снабжения кислородом для дыхания в коммерческих и военных самолётах. Основным и практически неисчерпаемым источником получения жидкого кислорода является атмосферный воздух: производится сжижение воздуха и последующее разделение его на кислород и азот.
Из-за своей криогенной природы ЖК может вызвать хрупкость материалов, которые находятся с ним в соприкосновении. Жидкий кислород также является очень мощным окислительным агентом: органическое вещество быстро сгорает в его среде с большим выделением тепла. Более того, некоторые из этих веществ, будучи пропитанными ЖК имеют свойство непредсказуемо взрываться. Нефтепродукты часто демонстрируют такое поведение, включая асфальт.
Жидкий азот имеет более низкую точку кипения 77 K (−196 °C) и устройства, которые содержат жидкий азот могут конденсировать кислород из воздуха: когда большая часть азота испаряется из такого устройства возникает риск того, что остаток жидкого кислорода может сильно прореагировать с органическими материалами. С другой стороны, жидкий азот или жидкий воздух может оказаться насыщенным жидким кислородом, если оставить ёмкость на открытом воздухе — атмосферный кислород будет в ней растворяться, в то время как азот будет испаряться быстрее.
Меры безопасности при работе с жидким кислородом:
4. При перекачке жидкого кислорода производится предварительное «захолаживание» системы малым расходом продукта. Без этого в «горячей» системе образуется интенсивный поток газифицированного кислорода, который при наличии резких поворотов и перепадов давления на элементах системы (вентили и т.п.) может вызвать возгорание металла.
Расплескалась синева: первое получение жидкого кислорода
История сжижения кислорода под конец превратилась в соперничество. Но кто возьмет верх: инженер, всю жизнь проработавший на металлургическом заводе, или специалист по физике низких температур в Женевском университете? Лед или пламень, теория или практика, Эйфелева башня или Суэцкий канал одержат победу? Об этом читайте в рубрике «История науки».
Жидкий кислород, налитый в химический стакан, а не в сосуд Дьюара, удивит вас красивым голубым цветом. Этот цвет в прямом смысле небесной лазури – ведь этот газ составляет 21% воздуха. Но первым человеком, получившим его, был вполне приземленный инженер и владелец завода, не привыкший мечтами парить в небесах.
Луи-Поль Кайете родился в Бургундии, в живописной коммуне Шатийон-сюр-Сен. Школьное образование он начал получать там же, продолжил в Париже, а затем поступил в Горный институт вместе с братом Камилем. Там, в химической лаборатории, Луи познакомился со множеством будущих знаменитостей французского научного мира. Окончив институт, братья совершили несколько поездок в Англию, Австрию и Германию, тоже с образовательными целями: там они увидели самые современные доменные печи и прокатные станы, знакомились с самым передовым оборудованием. Но заниматься всю жизнь одной наукой не получилось: отец и дед молодых людей состарились, и дома, в Бургундии, нужна была помощь в работе на металлургическом заводе.
Myrabella / Wikimedia Commons / CC BY-SA 4.0
Но и там Луи не прекратил научных изысканий. Сначала он занялся исследованием процессов горения древесины в печах, показав, что этот процесс приводит к выделению углекислого газа. Была у него слабость и к ботанике: свободное время он уделял своей небольшой оранжерее, где выращивал редкие орхидеи и бегонии, в результате даже опубликовав несколько статей по физиологии растений.
После того, как его брат умер от туберкулеза, а отец и дед – от старости в 1860-х годах, Луи-Поль Кайете остался единственным владельцем завода. Но это только подстегнуло его исследования. Он занялся изучением выплавки чугуна и участием в ней разных газов. Для понимания процессов в плавильных печах ученому нужно было измерить температуру и давление. Однако существующие приборы не работали в большом диапазоне температур и давлений, и Кайете посвятил полтора десятка лет своей жизни усовершенствованию манометров и термометров, а также изучению зависимости объема газов от давления и температуры, описанной законом Бойля-Мариотта.
В 1870 году на первом этаже оранжереи он построил себе лабораторию, оборудованную мощным гидравлическим насосом, чтобы изучать химические вещества при высоком давлении и температуре. Итогом его работы стал манометр, способный измерить давление до 400 атмосфер. В 1891 году он даже установил свой манометр на Эйфелевой башне.
Тогда Кайете и заинтересовался сжатием газов и решил получить их в жидком виде. В ноябре 1877 года он проводил опыты по сжижению ацетилена и диоксида азота, сначала сжимая их под большим давлением, а потом охлаждая их другими сжиженными газами. Кайете использовал эффект Джоуля-Томпсона, зная, что если замораживать газ при сильном давлении, а затем позволить ему резко расшириться, температура газа упадет еще больше.
Аппарат Кайете для сжижения газов
Popular Science Monthly Volume 12/Wikipedia
Этим ученым был физик из Женевы Рауль Пикте. Он был третьим из пяти отпрысков старинного швейцарского рода. Получив образование в Париже, Пикте к тому времени уже семь лет возглавлял кафедру в Женевском университете, занимаясь физикой низких температур. До этого он успел поработать в Египте во время строительства Суэцкого канала, реорганизовав образовательные учреждения в этой стране.
В отличие от своего французского соперника, он сам не занимался инженерным делом и прикладной наукой, хотя и верил в важность образования в обеих областях. Несмотря на это, у него, несомненно, был изобретательский талант: уже в 23 года он сконструировал холодильную установку, которая производила 15 килограммов льда в час. Идея Пикте о том, что в холодильных установках должна быть смесь двух веществ, была развита в дальнейшем и использована на практике при создании холодильников и криогенного оборудования.
Лаборатория Рауля Пикте
Ch. Baude/L’Illustration, du 19 janvier 1878, vol. LXXI, p. 45, et L’Exposition de Paris, journal hebdomadaire, du 28 mai 1878, N°4, p. 28
Разрешить спор помог Анри Девиль – французский физикохимик, разработавший промышленный способ производства алюминия и преподаватель Сорбонны. Также он ввел теорию диссоциации – разложения вещества при нагревании – и изготовил эталоны метра и килограмма из сплава платины и иридия для Международной комиссии мер и весов в 1872 году. К такому влиятельному ученому нельзя было не прислушаться. Так на чьей же он был стороне? Оказалось, Девиль, друг Кайете, получил от него письмо, датированное 2 декабря, с точным и полным описанием опыта по получению кислорода. При возникновении разногласий Анри Девиль тут же доставил доказательства секретарю Академии наук. Так Луи-Поль Кайете и стал известен как первый ученый, получивший кислород в жидком виде.