кобальт что дает в стали
Кобальтовая сталь
КОБАЛЬТОВАЯ СТАЛЬ
Сталь, в которой основным легирующим элементом является кобальт. Используется с начала 20 в. Кобальт (10— 15%) почти не влияет на концентрацию углерода в перлите и на т-ру полиморфных превращений в стали, не повышает т-ру критических точек во время нагрева и охлаждения.
При содержании до 6% кобальт, повышая коэффициент диффузии в аустените или не изменяя его (при большем количестве), увеличивает критическую скорость закалки до охлаждения и уменьшает закаливаемость. Если т-ра закалки повышается до 1200° С, твердость стали не только не увеличивается, но даже снижается по сравнению с твердостью углеродистой стали с таким же содержанием углерода.
Если сталь, наряду с кобальтом (
5%), легируют ванадием (0,5— 2,5%), вольфрамом (10—20%) и хромом (3—4%), то кобальт в ней почти полностью находится в твердом растворе, упрочняя металлическую основу. Кроме того, он увеличивает растворимость сложных высоколегированных карбидов, основа стали обогащается углеродом, ванадием, вольфрамом и хромом, вследствие чего увеличивается эффект дисперсионного твердения и сталь сохраняет высокую твердость после отпуска (с т-ры 560— 580° С). С увеличением содержания кобальта повышается количество остаточного аустенита, к-рый нестоек и распадается при отпуске с образованием мартенсита.
Различают кобальтовая сталь быстрорежущую (см. Быстрорежущая сталь) и магнитную (см. Магнитная сталь). Для улучшения режущих св-в быстрорежущую кобальтовая сталь закаливают при т-ре, к-рая на 400—450° С превышает т-ру критической точки Av Высокая т-ра закалки необходима, чтобы возможно полнее растворить избыточные карбиды и перевести в твердый раствор больше углерода, ванадия, вольфрама и хрома. Чем выше т-ра нагрева, тем ниже т-ра начала и конца мартенситного превращения и тем больше в структуре сохраняется остаточного аустенита.
Для наиболее полного распада остаточного аустенита и получения вторичной твердости применяют многократный отпуск, который можно заменить однократным, если непосредственно после закалки сталь обработать холодом при т-рах 80 и 100° С. Кобальтовая сталь марок Р9К5, Р9К10,Р10К5Ф5 и Р18К5Ф2 после закалки и отпуска обладает высокой твердостью (66— 68 HRC) и повышенной теплостойкостью (т-ра около 630—650° С). Из стали таких марок изготовляют инструменты для резания изделий из кислотостойкой стали и жаропрочной стали аустенитного класса, обработка которых инструментом из других быстрорежущих сталей затруднена. Магнитная кобальтовая сталь марок ЕХ5К5 и ЕХ9К15М характеризуется высокой коэрцитиеной силой (100—150 э) и остаточной индукцией (9000 — 10 000 гс).
Термическую обработку магн. стали проводят с особой точностью, поскольку количество остаточного аустенита и распределение карбидов сильно влияют на магн. св-ва. Высокотемпературной закалкой (т-ра 1200° С) в раствор переводят максимально возможное количество карбидов, после чего сталь имеет практически полностью аустенитную структуру. Непродолжительным промежуточным отжигом при т-ре до 750° С создают исключительно тонкое распределение карбидов. Последующей закалкой с т-ры 900—1000° С можно получить структуру мартенсита почти без остаточного аустенита. Такая сталь отличается хорошими магн. св-вами, в особенности высокой коэрцитивной силой. В зависимости от структуры, полученной в литом или катаном состоянии, добиваются хороших магн. св-в и после однократной закалки. Магн. сталь хорошо поддается резанию, из нее изготовляют (прокаткой, ковкой или литьем) различные магниты. Мощность литых магнитов почти такая же, как и кованых.
Лит.: Довгалевский Я. М. Сплавы для постоянных магнитов. Металловедение и термическая обработка стали. Справочник, т. 2.
Статья на тему кобальтовая сталь
Кобальт что дает в стали
Как микроэлемент, кобальт входит в состав витамина В12 и содержится в теле человека в соотношении 0.1-0.2мг на 1 кг. массы человека.
Традиционно считается, что углерод увеличивает стойкость кромки и повышает предел прочности при растяжении, твердость стали и увеличивает устойчивость к износу и истиранию. Его высокие значения уменьшают коррозионную стойкость стали и изготовленных из нее инструментов.
===
Впрочем, марганцем улучшают свойства не только железа. Так, с его помощью металл очищают от серы, считающейся вредной примесью, а сплавы марганца с медью обладают высокой прочностью и коррозионной стойкостью. Считается, что марганец увеличивает прокаливаемость, износостойкость и прочность на разрыв. Является деоксидом и дегазатором для удаления кислорода из расплавленного металла. В больших количествах повышает твердость и хрупкость.
===
Ниобий входит в состав различных жаропрочных сплавов для газовых турбин реактивных двигателей. Легирование ниобием молибдена, титана, циркония, алюминия и меди резко улучшает свойства этих металлов, а также их сплавов. Существуют жаропрочные сплавы на основе ниобия в качестве конструкционного материала для деталей реактивных двигателей и ракет (изготовление турбинных лопаток, передних кромок крыльев, носовых концов самолётов и ракет, обшивки ракет). Ниобий и сплавы на его основе можно использовать при рабочих температурах 1000 — 1200°С. Карбид ниобия входит в состав некоторых марок твёрдых сплавов на основе карбида вольфрама, используемых для резания сталей. Ниобий широко используется как легирующая добавка в сталях. Добавка ниобия в количестве, в 6-10 раз превышающем содержание углерода в стали, устраняет межкристаллитную коррозию нержавеющей стали и предохраняет сварные швы от разрушения. Ниобий также вводят в состав различных жаропрочных сталей (например, для газовых турбин), а также в состав инструментальных и магнитных сталей.
===
Повышенное содержание фосфора также ухудшает кузнечную свариваемость стали. Это может привести например, к плохому завариванию пустот в слитках при обработке давлением, в связи с чем могут увеличиваться отходы (головная обрезь) от слитков. Сталь с высоким содержанием фосфора обладает и так называемой синеломкостью, т.е. хрупкостью при температурах 500—600° С.
Однако сказанное относится в основном к тем сталям, которые не подвергаются обработке резанием. В сталях, обрабатываемых резанием, сера повышает обрабатываемость, поэтому, например, в отдельные марки сталей серу вводят специально (0,1-0,2%).
===
Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в Украине марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам.
==
P.S. Более подробно о сталях, упомянутых выше и о других, используемых для изготовления клинков, парикмахерского или маникюрного инструмента можно прочесть в ЭТОЙ статье.
Влияние химических элементов на свойства стали.
Каталог
Наш Instagram
Влияние хим. элементов на свойства стали.
Условные обозначения химических элементов:
хром ( Cr ) — Х никель ( Ni ) — Н молибден ( Mo ) — М титан ( Ti ) — Т медь ( Cu ) — Д ванадий ( V ) — Ф вольфрам ( W ) — В | азот ( N ) — А алюминий ( Аl ) — Ю бериллий ( Be ) — Л бор ( B ) — Р висмут ( Вi ) — Ви галлий ( Ga ) — Гл | иридий ( Ir ) — И кадмий ( Cd ) — Кд кобальт ( Co ) — К кремний ( Si ) — C магний ( Mg ) — Ш марганец ( Mn ) — Г | свинец ( Pb ) — АС ниобий ( Nb) — Б селен ( Se ) — Е углерод ( C ) — У фосфор ( P ) — П цирконий ( Zr ) — Ц |
ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА
Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.
Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)
Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.
Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).
Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.
ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ
Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.
Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.
Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.
Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.
Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.
Марганец (Г) — при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.
Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.
Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.
Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.
Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.
Алюминий (Ю) — повышает жаростойкость и окалиностойкость.
Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.
Церий — повышает прочность и особенно пластичность.
Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.
Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.
Влияние химического состава на механические свойства стали
Каждый химический элемент, входящий в состав стали, по-своему влияет на ее механические свойства – улучшает или ухудшает.
Углерод (С), являющийся обязательным элементом и находящимся в стали обычно в виде химического соединения Fe3C (карбид железа), с увеличением его содержания до 1,2% повышает твердость, прочность и упругость стали и уменьшает вязкость и способность к свариваемости. При этом также ухудшаются обрабатываемость и свариваемость.
Кремний (Si) считается полезной примесью, и вводится в качестве активного раскислителя. Как правило, он содержится в стали в небольшом количестве (в пределах до 0,4%) и заметного влияния на ее свойства не оказывает. Но при содержании кремния более 2% сталь становится хрупкой и при ковке разрушается.
Марганец (Mn) содержится в обыкновенной углеродистой стали в небольшом количестве (0,3-0,8%) и серьезного влияния на ее свойства не оказывает. Марганец уменьшает вредное влияние кислорода и серы, повышает твердость и прочность стали, ее режущие свойства, увеличивает прокаливаемость, но снижает стойкость к ударным нагрузкам.
Сера (S) и фосфор (Р) являются вредными примесями. Их содержание даже в незначительных количествах оказывает вредное влияние на механические свойства стали. Содержание в стали более 0,045% серы делает сталь красноломкой, т.е. такой, которая при ковке в нагретом состоянии дает трещины. От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды (MnS). Содержание в стали более 0,045% фосфора, делает сталь хладноломкой, т.е. легко ломающейся в холодном состоянии. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.
Ниобий (Nb) улучшает кислостойкость стали и способствует уменьшению коррозии в сварных конструкциях.
Титан (Тi) повышает прочность, плотность и пластичность стали, улучшает обрабатываемость и сопротивление коррозии. Повышает прокаливаемость стали при малых содержаниях и понижает при больших.
Молибден (Mo) повышает прочностные характеристики стали, увеличивает твердость, красностойкость, антикоррозионные свойства. Делает ее теплоустойчивой, увеличивает несущую способность конструкций при ударных нагрузках и высоких температурах. Затрудняет сварку, так как активно окисляется и выгорает.
Никель (Ni) увеличивает вязкость, прочность и упругость, но несколько снижает теплопроводность стали. Никелевые стали хорошо куются. Значительное содержание никеля делает сталь немагнитной, коррозионностойкой и жаропрочной.
Вольфрам (W) образуя в стали твердые химические соединения – карбиды, резко увеличивает твердость и красностойкость. Увеличивает работоспособность стали при высоких температурах, ее прокаливаемость, повышает сопротивление стали к коррозии и истиранию, уменьшает свариваемость.
Ванадий (V) обеспечивает мелкозернистость стали, повышает твердость и прочность. Увеличивает плотность стали, так как является хорошим раскислителем. Снижает чувствительность стали к перегреву и улучшает свариваемость.
Кобальт (Co) повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.
Алюминий (Аl) является активным раскислителем. Делает сталь мелкозернистой, однородной по химическому составу, предотвращает старение, улучшает штампуемость, повышает твердость и прочность, увеличивает сопротивление окислению при высоких температурах.
Медь (Cu) влияет на повышение коррозионной стойкости, предела текучести и прокаливаемости. На свариваемость не влияет.
Для всестороннего понимания и анализа процессов, происходящих при легировании и деформировании сталей, важную роль играет знание зависимостей между химическим составом и механическими свойствами.
Целью настоящих исследований является изучение комплексного влияния химического состава на предел текучести σТ арматурной стали класса А500С.
В течение сентября и октября текущего года в Лаборатории испытаний строительных материалов и конструкций ГБУ «ЦЭИИС» проводились испытания образцов арматурных стержней диаметром от Ø16 до Ø36. Были выполнены более 30 параллельных испытаний. При этом для одной и той же пробы данного типоразмера арматурных стержней определяли фактическую массовую долю химических элементов с помощью оптико-эмиссионного спектрометра PMI-MASTER SORT (рис.1) и механические свойства стали при помощи испытательной машины ИР-1000М-авто (рис.2).
Для обеспечения достоверности статистических выводов и содержательной интерпретации результатов исследований сначала определили необходимый объем выборки, т.е. минимальное количество параллельных испытаний. Так как в данном случае испытания проводятся для оценки математического ожидания, то при нормальном распределении исследуемой величины минимально необходимый объем испытаний можно найти из соотношения:
где υ – выборочный коэффициент вариации,
tα,k – коэффициент Стьюдента,
k = n-1 – число степеней свободы,
Как правило, генеральный коэффициент вариации γ неизвестен, и его заменяют выборочным коэффициентом вариации υ, для определения которого нами была проведена серия из десяти предварительных испытаний.
По результатам проведенных испытаний и выполненных расчетов при доверительной вероятности Р=0,95 получен необходимый объем выборки, равной n=26. Фактическое количество испытаний, как было сказано выше, составило 36.
Массив данных, полученных по результатам проведенных параллельных испытаний, был обработан с помощью многофакторного корреляционного анализа.
Уравнение множественной регрессии может быть представлено в виде:
где X=(X1, X2,…, Xm) – вектор независимых (исходных) переменных; β – вектор параметров (подлежащих определению); ε – случайная ошибка (отклонение); Y – зависимая (расчетная) переменная.
Разработка множественной корреляционной модели всегда сопряжена с отбором существенных факторов, оказывающих наибольшее влияние на признак-результат. В нашем случае из дальнейшего рассмотрения были исключены три элемента (Аl, Тi, W) по причине их низкой массовой доли (
Если вы нашли ошибку: выделите текст и нажмите Ctrl+Enter