космические струны что это
Космические струны. Что это?
В теории струн все физические взаимодействия сводятся уже к взаимодействию не точечных, а протяжённых объектов – к взаимодействию струн.
Что же такое космические струны?
В просторах космос просматриваются нитевидность при расположении галактик и их скоплений. Нитеобразное расположение скоплений в сверхскоплениях видны более отчётливо, чем нитевидные расположения отдельных галактик в самих скоплениях. Скорей всего это объяснятся тем, что галактики расположены ближе друг к другу, чем соседние скопления и потому в значительно большей степени подвержены взаимодействию сил взаимного тяготения. Есть предположение, что на заре возникновения Вселенной существовали нитевидные уплотнения материи, которые способствовали возникновению галактик.
Материал, из которого состоят подобные нитевидные, тончайшие, словно волос, образования (космические струны) должен быть чудовищно плотным и массивным. Иначе эти неоднородности не смогли сконцентрировать вокруг себя и удержать вещество, необходимое для формирования тысячи галактик. Этот материал должен быть в высшей степени устойчивым, крепким, способным не только противостоять необычно бурным процессам, протекающим в окружающей расплавленной магме, но и оставаться при этом «холодным», безразличным к испепеляющему жару ранней Вселенной.
Обсуждая удивительные свойства космических струн физики, нередко говорят о «запаянном» в этих тончайших «жгутах» «первобытном» вакууме и о «высоконапряжённом вакуумном поле», о « первобытном правеществе».
Можно ли сейчас обнаружить космические струны или хотя бы их остатки? «Струны» не излучают ни света, ни радиоволны, хранят они полное «молчание» и во всех других диапазонах электромагнитных излучений. Одна надежда на гравитацию. Если позади струны расположен квазар (компактный, необыкновенно яркий космический объект), то в телескоп мы увидим не одну, а две близко расположенные светящиеся точки. Благодаря воздействию поля тяготения «струны» произойдёт «расщепление» изображения квазара на две составляющие. Если же позади «космической струны» окажется какая-нибудь галактика, то её видимый диск мы увидим рассеченный на две половины.
Так была построена новая, «струнная» модель формирования крупномасштабных структур Вселенной.
Группа астрофизиков из Гарвардского университета в США в результате тщательного анализа ряда скоплений галактик, обнаружила довольно многочисленные нарушения нитеобразной структуры. Оказалось, что в ряде мест у «нитей» имеются гигантские разрывы, свободные от вещества, протяжённостью в сотни миллионов световых лет. По форме эти пустоты похожи на гигантские «пузыри», на поверхности которых расположены галактики. И что самое главное и самое интересное: такие галактики разлетаются во все стороны от центров с огромными скоростями, достигающими тысяч километров в секунду.
Такая картина невольно наводит на мысль, что в истории эволюции Вселенной был период каких-то грандиозных катаклизмов, гигантских взрывов, разметавших во всех направлениях часть вещества «космических струн», вследствие чего формирование галактик происходило не только вдоль нитевидных сгущений, но и на внешних окраинах.
Источник информации книга В.Н.Комарова «Тайны пространства и времени».
Космические струны, о которых впервые заговорили в 1970-х годах, считаются огромными линиями разломов, некогда существовавшими в космосе. Широко распространено мнение, что космические струны образовались миллиарды лет назад, всего через несколько минут после Большого взрыва, когда Вселенная все еще была густой массой чрезвычайно горячей материи.
Когда Вселенная остыла, в разных областях пространства образовались дефекты, которые по-разному охлаждались, подобно трещинам, образующимся во льду на замерзшем пруду. Эти дефекты в космосе и были космическими струнами.
Хотя исследователи еще непосредственно не наблюдали сами струны, команда считает, что они нашли доказательства того, что они спрятаны в древних квазарах, огромных черных дырах, которые испускают мощные струи света и радиации, найденные в основе многих галактик.
Предполагаемые космические струны были невероятно узкими, более тонкими, чем диаметр протона, но настолько плотными, что струна длиной менее двух километров могла бы весить больше Земли. По мере расширения Вселенной эти струны также расширялись до тех пор, пока они не растянулись по известной Вселенной или не образовали огромные кольца, в тысячи раз превышающие нашу галактику.
«Их магнитное поле в некотором роде связано с расширением Вселенной», — сказал Роберт Полтис из Университета в Буффало, штат Нью-Йорк, и ведущий автор статьи, сообщающей о результатах.
Команда Полтиса проанализировала данные наблюдений 355 квазаров, которые находятся в отдаленных уголках Вселенной. При тщательном изучении света, испускаемого этими квазарами, можно определить направление, в котором их струи находятся в пространстве. Команда обнаружила, что 183 из них выстроились в линию, образуя два огромных кольца, которые тянулись по небу по образцу, который вряд ли образовался случайно. Члены команды считают, что магнитные поля двух космических струн повлияли на направление, на которое указывают квазары. Сами струны давно должны были рассеяться, испуская гравитационное излучение, когда они вибрировали, однако первоначальный эффект на выравнивание квазаров остался бы.
«Сама струна исчезла, но в ранней вселенной запечатлено магнитное поле», — сказал Полтис. Чтобы проверить свою гипотезу, они смоделировали теоретическое влияние струн на формирование квазаров и обнаружили, что их предсказания близко совпадают с их наблюдениями. Полтис также добавил, что им все еще необходимо проводить дополнительные наблюдения и анализ, прежде чем они смогут быть полностью уверены, что нашли доказательства.
Обнаружение космической струны было бы важным космологическим открытием из-за их теоретической важности для формирования галактик в ранней Вселенной. Однако другие исследователи с осторожностью относятся к результатам. Джон Уррестилла из Университета Страны Басков в Бискайе, Испания, не хочет слишком быстро делать выводы. Он сказал, что исследования Полтиса захватывающие, потому что его команда делает проверяемые прогнозы.
«Еще рано говорить о том, что в этой работе были обнаружены доказательства наличия космических струн. Это многообещающе, наука обоснована, но следует быть осторожным. Существуют предположения, которые необходимо проверить», — сказал Уррестилла.
Космические струны
Космическая струна — гипотетически реликтовый астрономический объект, представляющий собой одномерную складку пространства-времени. Струны иногда описываются одномерными топологическими дефектами пространства-времени конического типа.
Космические струны могут, в частности, являться одним из следствий теории струн.
Существование «космических струн» было впервые предсказано британским физиком Томасом Кибблом в 1976 году, а их теория была развита советским физиком Яковом Зельдовичем к 1981 году.
Диаметр космических струн значительно меньше размеров атомных ядер (порядка 10−29 сантиметра), длина — как минимум десятки парсек, а удельная масса — порядка 1022 грамм на сантиметр, то есть всего лишь тысяча километров струны имеет массу Земли, и это означает, что струны обладают крайне высокой плотностью.
Из теории следует, что космические струны возникли вскоре после Большого взрыва и были либо замкнутыми, либо бесконечными. Струны изгибаются, перехлёстываются и рвутся. Оборванные концы струн тут же соединяются, образуя замкнутые куски. И сами струны, и их отдельные фрагменты летят сквозь Вселенную со скоростью, близкой к скорости света.
Увидеть космическую струну, разумеется, невозможно, но она, как любой очень массивный объект создаёт «гравитационную линзу»: свет от источников, находящихся за ней, должен её огибать.
В 2003—2005 годах в прессе появился ряд публикаций, согласно которым изображение галактики CSL-1, находящейся на расстоянии 6-7 миллиардов световых лет, может быть интерпретировано как факт открытия космической струны. В более поздних работах существование струны в окрестности CSL-1 отрицается. Остаётся, однако, открытой возможность, что речь идёт всё же о струне, но несколько более экзотического вида.
В октябре 2010 года появились сообщения о новых косвенных доказательствах существования космических струн, основанных на наблюдении за квазарами
Интересно. Что если эта струна рассечет меня напополам? С одной стороны она не должна взаимодействовать с материей, тк безмерно меньше моих атомов, те пройдёт сквозь них, но при такой огромной гравитации что она способна со мной сделать?
Луна 27.11.2021
Зачем астроному грабли или как я заболел небом
Это случилось в одно прекрасное воскресенье, звучит довольно банально, но это так. До этого тоже были попытки, но осознанный шаг произошел именно тогда, в детском магазине игрушек. Я увидел телескоп, нахлынули воспоминания: мы с Папой на даче, летней ночью лежим на крыше бани и смотрим на звёздное небо. А еще спортивный лагерь: выбежав ночью по малой нужде и случайно подняв взгляд на небо, застыл от изумления. Ни истинная цель моей ночной «прогулки», ни даже голодные комары, не в силах были заставить десятилетнего подростка отвести глаза от прекрасного августовского неба и летящего между скоплениями звезд спутника.
Естественно, телескоп я приобрел! Ну и как многие уже догадались, разочаровался в инструменте очень быстро – игрушка она и в Африке игрушка. Пластиковые линзы, хлипкий штатив. Наблюдать можно, но только, не то, что хочешь.
В последующую неделю, избороздив множество специализированных форумов и сайтов, открыл для себя неизведанный мир, который я не заслуженно обделял вниманием. И конечно же встал на первые “грабли” начинающего любителя астрономии – пошел покупать телескоп с ворохом информации, не определившегося, чего же он хочет. Напоминает жонглера, который орудует различными предметами и одновременно балансирует на паре стульев, пытаясь при этом прыгать на скакалке, держа еe в зубах. Представили? Мне хотелось всего и сразу: и наблюдения, и астрофотографию, и планеты, и объекты глубокого космоса, и все вот это сразу здесь и сейчас, немедленно. Пожалуйста никогда так не поступайте. Лучше сделать небольшую паузу, дайте чувствам успокоиться, перенесите поход в магазин на день. А еще лучше на неделю!
Да каким я был наивным! Вспоминая себя в прошлом, понимаешь: Большое путешествие начинается с первого шага, и ты его сделал, а странствия и открытия продолжаются по сию пору!
Чистого неба и удачных наблюдений!
ЗЫ Рассказ из цикла Записки Звездного Искателя
Луна, 27 ноября 2021 года, 01:28
-телескоп-астрограф Meade 70 мм Quadruplet APO
-монтировка Sky-Watcher AZ-GTi
-линза Барлоу НПЗ 2х
-светофильтр ZWO IR-cut
-камера ZWO ASI 183MC
Место съемки: Анапа, двор.
Мой космический Instagram: star.hunter
Что сейчас с кометой Леонард? C/2021 A1 в телескоп. Наблюдаем движение Цереры по небу
Ночь на 23 ноября выдалась очень холодной и ветреной. Настолько, что я даже отказался записывать видео на улице и теперь вещаю из тепла.
Но главное, что ночь эта была ясной.
Их я и решил пронаблюдать. Что из этого вышло смотрите в очередной серии моего видеоблога «Будни звездочета».
Астрономы обнаружили, что Магелланов Поток находится намного ближе, чем считалось
Новая модель эволюции Магелланова Потока показывает, что он уже сблизился с диском Млечного Пути и начнет слияние с ним всего через какие-то 50 миллионов лет
Наша Галактика далеко не одинока. Ее окружают десятки карликовых галактик-спутниц, самые значительные из которых — Большое и Малое Магеллановы Облака. От них к Млечному Пути протянулось облако нейтрального водорода — Магелланов Поток. Его можно наблюдать на ночном небе в Южном полушарии Земли. Магелланов Поток насчитывает около 180 тысяч световых лет в длину и набирает массу порядка сотен миллионов масс Солнца.
Новую модель образования этого потока описали астрофизики из Висконсинского университета в Мадисоне, статья которых опубликована в The Astrophysical Journal Letters. Ученые смоделировали эволюцию Магелланова Потока на протяжении последних 3,5 миллиарда лет и обнаружили, что находится он намного ближе, чем считалось прежде. А поскольку Млечный Путь продолжает сближение с ним и с Магеллановыми Облаками, их поглощение тоже состоится раньше.
Как показала компьютерная симуляция, более трех миллиардов лет назад Магеллановы Облака сошлись и начали вращаться так, что выброшенный из них поток вещества стал направлен в сторону нашей Галактики. Со временем ближайшая часть этого потока оказалась на расстоянии всего 65 тысяч световых лет от Солнца — для сравнения, предыдущие оценки лежали в пределах от 325 тысяч до 650 тысяч световых лет.
По сути, поток уже в периферийных областях диска Млечного Пути. Исходя из этого, и существующие оценки размеров и массы Магелланова Потока могут пересмотреть. Кроме того, намного раньше начнется активное перетекание вещества из него в Млечный Путь, что в итоге может привести к локальной вспышке звездообразования. По новым расчетам, этот процесс должен начаться уже в ближайшие 50 миллионов лет — по космическим меркам практически завтра.
Прекрасный снимок недавно прошедшего лунного затмения на фоне Плеяд
Автор фото: Astrofalls
Сатурн, 18 ноября 2021 года, 18:05
-телескоп Celestron NexStar 8 SE
-линзоблок длинной Барлоу 2х
-корректор атмосферной дисперсии Svbony ADC
-светофильтр QHY IR-cut
Сложение 5000 кадров из 43016.
Место съемки: Анапа, двор.
Мой космический Instagram: star.hunter
Девятой планете быть?
Британский астроном Майкл Рован-Робинсон из Имперского колледжа Лондона обнаружил потенциальную новую планету Солнечной системы
Она тяжелее Земли в 3-5 раз.
Он изучил снимки космической обсерватории IRAS и обратил внимание на объект на окраине Солнечной системы, который может оказаться неуловимой планетой Икс.
Как отметил Рован-Робинсон, параметрам гипотетической планеты Икс соответствует только один объект, присутствующий на снимках IRAS. Если обнаруженный объект на самом деле окажется девятой планетой Солнечной системы, то расстояние между этой планетой и Солнцем составляет от 225 до 250 расстояний между Землей и Солнцем. При этом, планета примерно в три-пять раз массивнее Земли.
Планета Икс — гипотетическое небесное тело, которое, согласно некоторым предположениям, может существовать на окраине Солнечной системы. Несколько лет назад планетологи из США Константин Батыгин и Майкл Браун сообщили, что обнаружили следы планеты Икс — расчеты ученых показали, что таинственная планета, удаленная от светила на 100 миллиардов километров, имеет размеры Нептуна или Урана.
Поиски неуловимой планеты пока что не привели ученых к четким результатам, однако Майкл Рован-Робинсон заявляет, что его открытие может оказаться той самой планетой Икс. Астроном говорит, что небесное тело не было обнаружено до сих пор из-за того, что оно вращается вокруг Солнца по сильно наклоненной орбите.
Ввиду развернувшейся в комментариях дискуссии
Ученый искал эту планету почти 30 лет.
Далее из его работы
В 1980-х годах уже давно существовал интерес к тому, что в то время считалось десятой планетой, Планетой X. Оказалось, что на орбите Нептуна есть необъяснимые обломки. Хотя они были намного меньше, чем обломки на орбите Урана, благодаря которым Ле Веррье и Адамс открыли Нептун, они побудили Томбо к поиску новой планеты. Что привело к открытию в 1930 году того, что мы теперь знаем как карликовую планету Плутон. Быстро стало ясно, что Плутон слишком мал, чтобы объяснить обломки на орбите Нептуна, и поэтому возможность существования десятой планеты оставалась (полный исторический обзор и ссылки см. в Батыгин и др. (2019)).
В 1983 году, работая над подготовкой каталога точечных источников IRAS, я предпринял систематический поиск Планеты X в данных IRAS. Поиск оказался безуспешным, хотя удалось обнаружить комету Боуэлла (Walker и Роуэн-Робинсон 1984). Забавно, что недопонимание, которое произошло на брифинге научной группы IRAS, проведенного старшими сотрудниками НАСА, привело к тому, что в 1983 году в прессе появилась информация о том, что IRAS открыл десятую планету. (см. Rowan-Robinson 2013 для подробного описания того, как возникло это недоразумение).
Интерес к Планете X вновь вспыхнул в конце 1980-х годов
(Harrington 1988, Seidelmann and Harrington 1988, Jackson and Killen 1988, Neuhauser and Feitzinger 1991) и Королевское астрономическое общество организовало дискуссионную встречу в 1991 году по теме «Динамика Солнечной системы и Планета X». Я представил отчет о моих поисках в IRAS и пришел к выводу, что я на 70% уверен, что Планеты X не существует. Цифра 70% относилась к области неба, в которой я смог провести свои исследования IRAS. Отчеты об этой встрече были представлены Моррисоном (1992) и Кроссуэллом (1991).
Впоследствии повторное измерение массы Нептуна выявило отсутствие нептунианских объектов (Standish 1992). Отсутствие отклонений от орбит космических аппаратов «Пионер» и «Вояджер» показывает, что ни одна неизвестная массивная планета Солнечной системы не находится в плоскости эклиптики.
Луман (2014) использовал данные WISE, чтобы установить жесткие ограничения для объектов с массой Сатурна или Юпитера массы объектов в Солнечной системе до 28 000 и 82 000 АЕ (астрономических единиц), соответственно.
Открытие десятков новых карликовых планет в течение последующих двадцати лет привело как к пересмотру определения
Плутона как карликовой планеты, так и к их потенциал в поиске возможных далеких массивных планет на сильно наклоненных орбитах.
Батыгин и Браун (2016) и Браун и Батыгин (2016), развивая идею Трухильо и Шеппарда (2014), предположили, что планета массой в несколько десятков земных масс на наклонной и эксцентричной орбите на расстоянии 280-1000 АЕ может объяснить выравнивание орбит карликовых планет пояса Койпера.
Поскольку эта планета была значительно более удаленной, чем Планета X,
которую я искал в 1983 году, я подумал, что стоит повторить мой поиск в IRAS и определить количественно, каковы ограничения для такого объекта. Фиенга и другие (2016), Холман и Пейн (2016), Иорио (2017), Миллхолланд и Лафтон (2017), Medvedev et al (2017), Caceres and Gomes (2018), Brown and Batygin (2019), Batygin et al (2019) и Fienga и др. (2020), дали дополнительные динамические ограничения на орбиту Планеты 9. В частности, Фиенга и другие (2016) используя данные радиолокации Кассини пересматривают параметры возможной планеты с орбиты Показать полностью 1
ЗАГАДКИ КОСМИЧЕСКИХ СТРУН
Доктор физико-математических наук М. САЖИН (Государственный астрономический институт имени П. К. Штернберга МГУ), В. ШУЛЬГА (Институт космических
Эйнштейн работал над объединением всех физических взаимодействий более тридцати лет, но положительного результата так и не достиг. Только в 70-е годы нашего столетия после накопления большого количества экспериментальных данных, после осознания роли идей симметрии в современной физике С. Вайнберг и А. Салам сумели объединить электромагнитные и слабые взаимодействия, создав теорию электрослабых взаимодействий. За эту работу исследователи совместно с Ш. Глэшоу (который теорию расширил) были удостоены Нобелевской премии по физике 1979 года.
Теория объединения электромагнитных, слабых и сильных взаимодействий предсказала, что в природе есть большое количество частиц, никогда не наблюдавшихся экспериментально. Это не удивительно, если учесть, какие невообразимые энергии нужны для их рождения во взаимодействиях привычных нам частиц. Другими словами, для наблюдений за их проявлениями опять необходимо обращать свой взор на раннюю Вселенную.
Итак, струны во Вселенной могут быть. И отыскать их придется астрономам.
Впрочем, рассказ об этой истории лучше начать с другой мартовской ночи, вернувшись на много лет назад.
В 1979 году астрофизики, изучая радиоисточник в созвездии Большой Медведицы, отождествили его с двумя слабыми звездочками. Расшифровав их оптические спектры, ученые поняли, что открыли еще одну пару неизвестных квазаров.
Эту работу по важности, пожалуй, можно сравнить с такими фундаментальными результатами, как обнаружение пульсаров, квазаров, установление сетчатой структуры Вселенной. «Линза» Тернера, безусловно, одно из выдающихся открытий второй половины нашего века.
Работа Тернера пока чем-то напоминает открытие планеты Нептун французским астрономом Леверье: новая линза существует тоже лишь на кончике пера. Она вычислена, но не обнаружена.
Из этих уравнений следует, что возникшая сразу после Большого взрыва космическая струна должна быть «замкнута» на границы Вселенной. Но границы эти так далеки, что середина струны их «не чувствует» и ведет себя, как кусок упругой проволоки в свободном полете или как леска в бурном потоке. Струны изгибаются, перехлестываются и рвутся. Оборванные концы струн тут же соединяются, образуя замкнутые куски. И сами струны, и отдельные их фрагменты летят сквозь Вселенную со скоростью, близкой к скорости света.
И если все три метода одновременно покажут, что в некой точке Вселенной имеется что-то, укладывающееся в современную теорию, можно будет достаточно уверенно утверждать, что этот невероятный объект обнаружен. Пока же единственной реальной возможностью наблюдать проявления космических струн остается эффект гравитационного линзирования на них.
Космические струны, кротовые норы и черные дыры: что ученые знают о путешествиях во времени и телепортации
Forbes публикует фрагмент книги «На что похоже будущее», которую в конце ноября выпустит на русском языке издательство «Альпина нон-фикшн». В книге коллектив авторов под руководством британского физика-теоретика Джима Аль-Халили пытается ответить на вопрос, что ждет человечество в будущем. Как изменится климат, каким будет транспорт и что получится, если искусственный интеллект возьмет над нами верх? Станут ли люди счастливее с помощью таблеток и здоровее благодаря лечению с учетом индивидуальной ДНК? Каких чудес техники нам ждать? Каких революций в быту? Forbes публикует последнюю главу книги, посвященную далекому будущему. В ней Аль-Халили пытается дать ответ на вопрос, возможны ли путешествия во времени и телепортация.
Телепортация
Насколько нам известно, самое первое упоминание устройства для телепортации содержится в книге Эдварда Пейджа Митчелла «Человек без тела», написанной в 1877 году: в ней рассказывается об ученом, который изобретает машину, способную разложить тело живого человека на атомы, а затем отправить их, подобно электрическому току, по проводам к некоему принимающему устройству, обеспечивающему воссоединение. Самое удивительное в том, что книга появилась не только до открытия электрона, но даже до внятного объяснения природы самих атомов.
Перенесемся на полстолетия вперед, в 1929 год, когда Артур Конан Дойль опубликовал рассказ под названием «Дезинтеграционная машина» об устройстве, способном разделять материю на части, а потом воссоздавать ее в прежнем виде. Один из персонажей рассказа задается вопросом: «В состоянии ли вы представить себе процесс, посредством которого вы, органическое существо, постепенно растворяетесь в пространстве, а затем благодаря обратному изменению условий появляетесь вновь?». Два года спустя американский писатель Чарльз Форт впервые ввел неологизм «телепортация » для объяснения случаев загадочного исчезновения людей и объектов и их предполагаемого появления где-то в другом месте. Форт относил такого рода происшествия к числу аномалий наряду с загадочными сверхъестественными и паранормальными явлениями, не находившими объяснения в рамках общепринятой научной картины мира. Благодаря интересу писателя появился целый класс «фортеанских феноменов».
Современное представление об устройстве для телепортации стало достоянием массовой культуры в 1958 году с выходом на экраны научно-фантастического фильма ужасов «Муха» (The Fly), в котором ученый по неосторожности примешивает к своему ДНК гены мухи, залетевшей в кабину для телепортации. Однако самым известным и долго живущим художественным воплощением идеи телепортации для множества людей по всему миру стал «транспортер» на борту звездолета «Энтерпрайз», а фраза, которую произносит один из героев перед телепортацией — «телепортируй меня, Скотти», — стала почти крылатой. Когда образ такого устройства возник в голове создателя сериала «Звездный путь» Джина Родденберрив середине 1960-х годов, им двигало желание сэкономить на спецэффектах: показывать, как персонажи сначала исчезают в специальном отсеке, а потом появляются сразу на поверхности планеты, было куда дешевле и проще, чем изображать спуск с «Энтерпрайз» на каких-нибудь космических челноках.
Это, конечно, все очень любопытно, но что по этому поводу может сказать серьезная наука? Идея переноса материи из одного места в другое без необходимости преодолевать расстояние между двумя точками может показаться чем-то нелепым, но на самом деле в ней нет ничего необычного при условии, конечно, что вы спуститесь на уровень квантовых взаимодействий. В ходе процесса под названием «квантовое туннелирование» такие субатомные частицы, как электроны, «прыгают» из одной точки в другую тогда, когда у них нет достаточного количества энергии.
Для наглядности можно привести пример мяча, который бросают в стену и который исчезает, а потом снова появляется на другой стороне стены без каких-либо последствий для нее. В этом совершенно точно нет ничего фантастического. Более того, сияние нашего Солнца, а значит, и поддержание жизни на Земле возможно только благодаря тому, что атомы водорода способны соединяться друг с другом за счет туннельного эффекта, несмотря на наличие, казалось бы, непреодолимого силового поля между ними.
Но еще более любопытное и парадоксальное предсказание квантовой механики, которое при этом было неоднократно подтверждено в ходе экспериментов, — идея запутанности. В данном случае мы имеем дело с ситуацией, когда две и более отдельные частицы оказываются связаны таким образом, что любое измерение или воздействие, осуществленное в отношении одной из них, приводит к аналогичному эффекту в отношении ее удаленного партнера, что, как кажется, противоречит теории относительности Эйнштейна о непреодолимости скорости света.
В квантовой механике это объясняется тем, что запутанные частицы — часть единой системы, то есть они не ведут себя как независимые объекты.
Давайте рассмотрим следующую аналогию. Представьте, что у вас есть пара перчаток, каждая из которых лежит в своем ящике. Теперь давайте перенесем один ящик в другое место, а второй оставим там, где он был изначально. Если вы откроете тот ящик, который остался у вас, вы найдете в нем левую перчатку. При этом вам станет сразу понятно, что во втором ящике находится перчатка для правой руки. Разумеется, в этом нет ничего загадочного — ведь вы просто констатируете то, что знаете: во втором ящике всегда была правая перчатка. Но в квантовом мире вместо перчаток мы имеем дело с запутанными частицами, каждая из которых способна участвовать одновременно в двух разных вращениях — и по часовой стрелке, и против часовой стрелки. Это явление называют квантовой суперпозицией.
Открывая ящик рядом с вами, вы совершаете действие, которое называют «квантовым измерением»: вы заставляете частицу «решить», в каком из вращений ей теперь участвовать. Мы же никогда не видим частицы вращающимися в обоих направлениях — ведь это же просто нелепо! Разве нет? Квантовая механика говорит нам — и эксперименты подтверждают ее правоту, — что такие квантовые суперпозиции действительно имеют место. Более того, как только вы открываете свой ящик, чтобы проверить перчатку, частица во втором ящике сразу же переходит из суперпозиции, в которой она вращалась в обоих направлениях, к вращению в одном направлении — противоположном направлению вращения первой частицы. Все происходит так, как будто в момент открытия первого ящика в другой мгновенно передается квантовый сигнал, сообщающий второй частице, как ей себя вести.
Переход от идеи суперпозиции и запутанности к понятию квантовой телепортации кажется вполне закономерным. Но может ли такой переход быть реализован на практике? Общий принцип работы квантовой телепортации состоит в следующем: две запутанные частицы помещаются на удалении друг от друга, после чего проводится сканирование подлежащего телепортации объекта таким образом, чтобы можно было перенести только информацию о нем из одной точки в другую посредством запутанной пары.
Она дополняется результатами измерения частицы, которые передаются отдельно через некоторое время. На основе собранной таким образом информации, включающей как сведения, переданные согласно принципам квантовой механики посредством запутанной пары, так и результаты сканирования, переданные отдельно на скорости света, затем на другом конце из соответствующего сырья воссоздается исходный объект.
Необходимо отметить, что суть телепортации не сводится к простому созданию копии исходной частицы. Во всяком случае, на квантовом уровне передача всей информации о частице означает передачу самой частицы: переносить исходную частицу на физическом уровне просто не нужно.
При этом важно понимать, что телепортация объекта предполагает, что он уничтожается в точке А и затем воссоздается в точке Б. Вместе с тем недавние предварительные исследования, проводимые в рамках изучения телепортации частиц, показывают возможность квантовой телепортации самого объекта.
Только нужно помнить, что от технологии, используемой персонажами «Звездного пути», нас, вероятно, отделяют столетия.
Путешествие во времени
Если научной базой идеи телепортации служит квантовая механика, то есть теория строения вещества на очень малых расстояниях, источником наших представлений о путешествиях во времени является теория, описывающая Вселенную на очень больших расстояниях, — общая теория относительности Эйнштейна (ОТО).
В настоящее время данная теория — наиболее точное описание природы пространства и времени, и тот факт, что она не исключает полностью возможность перемещения во времени, дает нам повод серьезно взяться за изучение этой темы. Согласно постулатам ОТО, под воздействием материи происходит искривление пространства и времени.
Более того, математический аппарат ОТО допускает возможность существования пространственно-временных областей весьма причудливой формы, таких, например, как черные дыры или кротовые норы. Теснее всего с нашей темой связана идея замкнутой времениподобной кривой. Она представляет собой замкнутую мировую линию, проходящую через искривленное пространство-время так, что время с неизбежностью возвращается к одним и тем же значениям. Если бы вам довелось проследовать вдоль этой линии, вам бы казалось, что время идет вперед, как обычно. Однако в конце пути вы бы оказались в точке отправления, в момент непосредственно перед отправлением. Таким образом, по сути, вы бы переместились назад во времени. Как раз такие петли и служат обоснованием большинства теоретических рассуждений на тему путешествия во времени.
В 1949 году американский математик австрийского происхождения Курт Гёдель, как и Эйнштейн, работавший в Институте перспективных исследований в Принстоне, выступил с другим гипотетическим сценарием, также не противоречащим ОТО, но при этом приводящим к появлению петель времени. Однако, как тогда, так и сейчас, большинство физиков считают, что логические парадоксы путешествия во времени, служат достаточным основанием для того, чтобы исключить его возможность, а теоретические лазейки в физических законах, допускающие путешествие во времени, в итоге будут устранены, когда мы поймем эти законы лучше. Возможно, это произойдет с появлением единой теории квантовой гравитации, которая объединит две важнейшие теории в физике: квантовую механику и ОТО. Пока что у нас нет такой «теории всего», но мы продолжаем работу над ее созданием.
К 1960–1970-х годах несколько физиков-теоретиков, занимавшихся поиском решений уравнений ОТО, обнаружили целый ряд моделей, допускавших существование петлей времени. Во всех из них фигурировали вращающиеся тела, заставлявшие деформироваться окружающее пространство-время. Наибольшую известность получила идея, предложенная Франком Типлером, который в 1974 году опубликовал статью, посвященную развитию теории вращающегося цилиндра ван Стокума. Он показал, что цилиндр должен быть 100 км в длину и 10 км в диаметре и изготовлен из какого-то очень необычного, исключительно плотного материала. Кроме того, он должен обладать фантастическими показателями прочности и жесткости, чтобы собственная гравитация вдоль оси его не сплющила, а также компенсировать громадную центробежную силу, разрывающую его при вращении внешней поверхности с линейными скоростями, близкими к половине скорости света. Несмотря на все это, Типлер вполне справедливо отметил, что все эти трудности не носят принципиального характера и могут быть преодолены при достаточном уровне развития технологий.
Осталось решить, как превратить цилиндр Типлера в машину времени. Идея в том, что если вы приблизитесь к вращающемуся цилиндру и несколько раз облетите вокруг него, то по возвращении на Землю вы, видимо, окажетесь в прошлом. Насколько далеко в прошлое вы вернетесь? Это будет зависеть от количества оборотов. Таким образом, даже если при облете цилиндра вам будет казаться, что время, как всегда, идет вперед, за пределами деформированного участка пространства-времени, в котором вы будете находиться, время обратится вспять. Например, нечто похожее случилось бы с вами, если бы вы решили подняться по спиральной лестнице, но с каждым новым пролетом вы оказывались бы на один этаж ниже.
Подозреваю, вы не верите в возможность манипулирования материей в таких масштабах с целью создания столь громадного объекта. Однако не исключено, что нерукотворные цилиндры Типлера уже существуют в пространстве. Вопрос их существования — предмет горячих споров.
Их называют «космическими струнами». По мнению некоторых исследователей космоса, они состоят из материала, оставшегося от Большого взрыва. Они могут либо существовать в форме замкнутых петель, либо тянуться вдоль всей Вселенной. Толщиной они менее атома, но при этом плотность их такова, что даже при толщине в один миллиметр они бы весили миллион миллиардов тонн.
Как бы там ни было, когда речь заходит о путешествиях во времени, самым правдоподобным — по крайней мере, наименее нелепым — способом перемещения в прошлое кажется так называемая кротовая нора. Кротовые норы — это своеобразные структуры пространства-времени, существование которых допускают уравнения ОТО, теоретически их описывающие. Кротовые норы представляют собой своего рода перемычку, соединяющую две точки пространства-времени. Они похожи на туннель, связывающий две различных области нашей Вселенной, проходя через какое-то иное измерение. А поскольку пространство и время тесно связаны друг с другом, в принципе два конца «кротовой норы» могут вести в разные промежутки времени, а значит, один из них будет находиться в прошлом относительно второго.
Так стоит ли нам доверять этим идеям? Сможем ли мы когда-нибудь создать кротовые норы? Могут ли они служить в качестве машин времени? Могут ли в нашей Вселенной формироваться замкнутые временные петли, и сможем ли мы использовать их, чтобы отправиться в прошлое?
Правда в том, что мы пока не можем дать однозначный ответ ни на один из этих вопросов. Но, чтобы не заканчивать на столь пессимистичной ноте, предлагаю вспомнить слова Франка Типлера, физика, который опубликовал первую серьезную работу на тему создания машины времени и который сам процитировал астронома Саймона Ньюкома, прославившегося на рубеже столетий благодаря ряду статей с доказательствами невозможности существования летающих машин тяжелее воздуха: «Доказательства того, что среди всех возможных комбинаций известных нам веществ, видов техники и сил нет такой, которая бы позволила создать пригодную для практического использования машину, с помощью которой люди могли бы [отправиться назад в прошлое], кажутся автору настолько полными и убедительными, насколько это только возможно для любого физического явления».
Как мы знаем, вскоре братья Райт доказали, что Ньюком был неправ в своих суждениях относительно летающих машин тяжелее воздуха. Кто знает, может быть, придет день, когда то же самое произойдет и с путешествиями во времени. Наверное, я бы не решился биться об заклад, что машина времени вообще когда-нибудь будет построена, но при этом я стараюсь придерживаться следующего подхода: раз современные научные теории не исключают такую возможность полностью, у нас достаточно причин, включая простое любопытство, поразмышлять над тем, что она может из себя представлять.
Я бы хотел закончить эту главу занимательной идеей, над которой сейчас всерьез размышляют некоторые физики-теоретики. Не исключено, что телепортация и перемещение во времени тесно связаны друг с другом. Согласно новой идее, получившей среди физиков обозначение «ER=EPR», между квантовой запутанностью (теоретическая основа телепортации) и кротовыми норами (теоретическая база путешествий во времени) имеется глубинная связь. Может оказаться, что в двух статьях, опубликованных Эйнштейноми его соавторами в 1935 году, которые до сих пор считались абсолютно не связанными, описывается один и тот же концепт. В так называемой статье EPR (название образовано из инициалов трех ее авторов —Эйнштейна, Подольски и Розена) впервые квантовая запутанность описывается как мгновенная взаимосвязь двух удаленных частиц. Сам Эйнштейн считал, что это невозможно, тем самым намекая на отсутствие у нас полного понимания квантовой теории. Вторая статья ER (за сочетанием букв скрываются все те же — Эйнштейн и Розен) стала первой работой, в которой излагалась идея кротовой норы, получившей тогда название «мост Эйнштейна — Розена».
И вот теперь, более 80 лет спустя после публикации двух статей, пришло время задаться смелым вопросом: а что, если пары запутанных частиц на самом деле способны взаимодействовать друг с другом благодаря тому, что они связаны кротовой норой? Чем больше я читаю и думаю об этой безумной идее, тем больше она мне нравится. В ней столько изящества! Получается, что кротовые норы, если, конечно, допустить возможность их существования в физическом мире, могли бы выступать в качестве и машин для телепортации, и машин времени. Разве можно придумать что-нибудь более грандиозное?
Пока же, конечно, предмету данной главы самое место в мире научной фантастики — ну и разумеется, в математических уравнениях смельчаков из стана физиков-теоретиков.
Каким бы ни был результат, я абсолютно убежден, что в ближайшие десятилетия — и столетия — наука преподнесет нам немало сюрпризов. Так давайте же мудро использовать новые знания.