метаболизм кишечника что это

Микробиота кишечника: ключевой регулятор метаболических заболеваний

Кишечная микробиота и нарушение обмена веществ

метаболизм кишечника что это. Смотреть фото метаболизм кишечника что это. Смотреть картинку метаболизм кишечника что это. Картинка про метаболизм кишечника что это. Фото метаболизм кишечника что это

Микробиота кишечника: ключевой регулятор метаболических заболеваний

Резюме

Распространенность ожирения и диабета 2 типа, двух тесно связанных метаболических нарушений, растет во всем мире. За последнее десятилетие связь между этими расстройствами и микробиотой кишечника стала основным направлением биомедицинских исследований, при этом недавние исследования продемонстрировали фундаментальную роль кишечной микробиоты в регуляции и патогенезе метаболических нарушений. Однако из-за сложности сообщества микробиоты основные молекулярные механизмы, с помощью которых микробиота кишечника связана с метаболическими нарушениями, остаются плохо изученными. В этом обзоре мы обобщаем недавние исследования, в которых изучается роль микробиоты как у людей, так и у животных моделей болезней, и обсуждаем соответствующие терапевтические цели для будущих исследований. [Отчеты BMB 2016; 49 (10): 536-541]

Микробиота слизистой оболочки кишечника

Кишечник хозяина уникален тем, что он постоянно подвергается воздействию множества антигенов из ежедневного приема пищи и экзогенных бактерий. Резидентная микробиота кишечника содержит ряд компонентов, способных активировать ответы как врожденного, так и адаптивного иммунитета (3, 9). Например, большинство кишечных бактерий являются грамотрицательными анаэробами, снабженными разнообразными агентами, такими как липополисахариды ( ЛПС ) и жгутики, что позволяет передавать врожденную сигнализацию кишечным эпителиальным клеткам через toll-подобные рецепторы ( TLR ) (10). Сегментированные нитчатые бактерии ( SFB ), внедренные в подвздошную кишку, также могут стимулировать адаптивные ответы Т-хелперов 17 ( TH17 ) и индуцировать выработку антител к иммуноглобулину A ( IgA ) слизистой оболочки (11). Кроме того, бутират, полученный из комменсальных микробов, связан с дифференцировкой регуляторных T (Treg)-клеток в толстой кишке (12).

Микробиота кишечника и нарушения обмена веществ

Чтобы решить эту проблему, с тех пор были приняты эксперименты по трансплантации микробиоты. Первоначальное исследование, проведенное Gordon et al., показало, что конвенционализация мышей без микробов с нормальной микробиотой приводила к увеличению содержания жира в организме и резистентности к инсулину в течение 14 дней, несмотря на снижение потребления пищи (19). Это исследование предоставило первое механистическое доказательство того, что кишечные микробы могут увеличить способность хозяина накапливать жировые отложения. Кроме того, у мышей без микробов, получавших кишечные микробы от тучного донора-близнеца, наблюдалось увеличение общей массы тела и жира, а также метаболических фенотипов, связанных с ожирением, по сравнению с теми, кто получал микробиоту худого близнеца (20). Интересно, что микробиота кишечника худой мыши могла вторгаться в микробиоту тучной мыши и обеспечивать защиту от увеличения веса, но это влияние зависело от диеты. Другие исследования показали, что безмикробные мыши, которым пересажена микробиота, связанная с ожирением, набирали вес, но не до чрезмерного ожирения (21). Таким образом, необходимо учитывать роль диеты и других факторов.

Диета изменяет микробиоту кишечника

Диета является одним из основных факторов ожирения, а также помогает формировать микробиоту кишечника. Исследования на людях за последнее десятилетие показали, что кишечная микробиота быстро реагирует на большие изменения в рационе; во многих случаях состав и функции кишечной микробиоты меняются в течение 1-2 дней (22, 23). Несмотря на такую стремительную динамику, долгосрочные диетические привычки по-прежнему играют решающую роль в определении состава кишечника человека (24), а эффективность конкретной диеты в значительной степени зависит от исходного состава кишечной микробиоты (25).

Обширные исследования показали, что кишечная микробиота традиционного сельского населения (т. е. высоковолокнистая, низкожировая диета) более разнообразна и содержит различные таксоны, чем микробиота западных популяций (т. е. низковолокнистая, высокожировая диета) (26). Сохранение микробного разнообразия с помощью диеты с высоким содержанием клетчатки и низким содержанием жиров позволяет людям максимизировать потребление энергии из клетчатки, а также защищает их от воспаления и неинфекционных заболеваний толстой кишки. Хотя неясно, способствует ли увеличение микробного разнообразия защите от метаболических заболеваний, несколько метагеномных исследований показывают, что улучшение исходов при метаболических заболеваниях связано с увеличением микробного разнообразия (27, 28). Например, группа исследователей секвенировала микробиомы 169 человек с ожирением и 123 человека без ожирения и обнаружила, что люди делятся на две группы: группа с низким уровнем разнообразия микробных генов и группа с высоким разнообразием (27). Люди с меньшим количеством генов, как правило, имели более выраженное ожирение, инсулинорезистентность и дислипидемию, чем люди, содержащие более разнообразную микробиоту кишечника. Кроме того, люди с ожирением и меньшим бактериальным разнообразием со временем прибавляли в весе больше. Эти данные предполагают, что манипулирование разнообразием микробов в кишечнике может быть многообещающим средством улучшения метаболических нарушений.

Регулирования микробных метаболитов

метаболизм кишечника что это. Смотреть фото метаболизм кишечника что это. Смотреть картинку метаболизм кишечника что это. Картинка про метаболизм кишечника что это. Фото метаболизм кишечника что это

Рис. 1. Взаимодействие между микробиотой кишечника и метаболизмом хозяина. На микробиоту кишечника может влиять целый ряд внешних факторов, в том числе состояние хозяина, тип диеты и медикаментозное лечение. Дисбаланс кишечной микробиоты может привести к серьезным метаболическим нарушениям (например, ожирению), изменяя чувствительность хозяина к инсулину или энергетический гомеостаз.

Микробная регуляция воспаления

Симбионты при метаболических заболеваниях

Таблица 1. Кишечная микробиота, связанная с ожирением

Gordon et al. сообщалось о фенотипах худых мышей, которые коррелировали с видами Bacteroides, такими как B. cellulosilyticus, B. uniformis, B. vulgatus, B. thetaiotaomicron и B. caccae (20). Пероральное введение штамма B. uniformis CECT 7771 улучшало вызванную HFD метаболическую дисфункцию у тучных мышей (62). Наша группа недавно сообщила, что мыши, получавшие HFD-корм, получавшие B. acidifaciens в течение 10 недель, набирали меньше жировой массы и массы тела, чем те, кто получал только PBS (45). Мы предположили, что активируемый пролифератором пероксисом рецептор α ( PPARα )-опосредованное окисление жира в жировых тканях и расширенный период полураспада GLP-1 участвуют в регуляции бактерией B. acidifaciens ожирения хозяина и инсулинорезистентности. Кроме того, метаболиты, секретируемые B. acidifaciens, могут играть критическую роль в поддержании низких уровней дипептидилпептидазы-4 ( DPP-4 ) в кишечнике (45) (Рис. 2). Было бы интересно провести последующее исследование, чтобы выявить лежащие в основе механизмы того, как работают полезные симбионты, а также растворимые факторы, продуцируемые этими бактериями и их перекрестными взаимодействиями.

метаболизм кишечника что это. Смотреть фото метаболизм кишечника что это. Смотреть картинку метаболизм кишечника что это. Картинка про метаболизм кишечника что это. Фото метаболизм кишечника что это

Рис. 2. Предлагаемый механизм модуляции чувствительности к инсулину хозяина с помощью Bacteroides acidifaciens (BA). Выбранная комменсальная бактерия (например, BA) заставляет кишечные эпителиальные клетки секретировать меньшее количество дипептидилпептидазы-4 ( DPP-4 ) в кишечнике и повышенное количество глюкагоноподобного пептида-1 ( GLP-1 ), что может способствовать гомеостазу глюкозы. В то же время повышенные уровни желчных кислот (например, холата и таурина) могут способствовать активации GLP-1 в кишечнике и активации рецептора α ( PPARα ), активируемого пролифератором пероксисом, через TGR5 в жировой ткани, что в конечном итоге приводит к окислению жира и улучшению чувствительности к инсулину.

Выводы и перспективы

Если учесть связь между диетой, кишечными микробами и болезнями обмена веществ, скорее всего, тут нет ничего простого. Хотя механистические исследования на животных моделях дали ценную информацию и выявили потенциальные терапевтические цели, будущие исследования столкнутся с трудностями, связанными с переводом этих результатов на пациента-человека.

Источник

Метаболизм кишечных газов и его роль в возникновении гастроинтестинальных симптомов

Резюме. Патофизиологические механизмы нарушения метаболизма кишечных газов и их значение в возникновении гастроинтестинальных симптомов все еще дискутабельны. Состав газовой смеси отличается в различных отделах желудочно-кишечного тракта. Основным источником газовой смеси желудка считается воздух, который попадает при глотании. Газовый состав кишечника в значительной степени определяется физиологией микрофлоры, заселяющей его. Характер питания рассматривается как фактор, в значительной степени определяющий газообразование. Результаты ряда исследований свидетельствуют о различии микробного состава у здоровых добровольцев и пациентов с функциональными заболеваниями кишечника. Дальнейшее изучение механизмов газообразования в кишечнике позволит более эффективно воздействовать на основные патогенетические механизмы заболевания, приводящие к возникновению симптомов, связанных с газообразованием.

Введение

Метаболизм кишечных газов представляет собой сложный и строго регулируемый процесс, включающий продукцию, потреб­ление, выделение и утилизацию газа различными отделами кишечника. Несмотря на то что интерес к этой гастроэнтерологической проблеме постоянно возрастает, патофизиологические механизмы нарушения метаболизма кишечных газов и их значение в возникновении гастроинтестинальных симптомов все еще дискутабельны.

На сегодняшний день в англоязычной литературе все чаще упоминается термин «симптомы, связанные с газами» (gas-rela­ted symptoms). Это понятие подразумевает наличие у пациента неспецифических жалоб, возникающих вследствие избытка полостных газов в кишечнике (Chang L. et al., 2001). К таким симптомам можно отнести вздутие живота, флатуленцию (выделение газов), отрыжку воздухом, ощущение растяжения живота и абдоминальный дискомфорт. Эти симптомы продолжают оставаться наиболее частыми проявлениями функциональных заболеваний кишечника, а также некоторых органических поражений желудочно-кишечного тракта (ЖКТ). Дальнейшее изучение физиологии и патофизиологии газообразования в кишечнике позволит приблизиться к пониманию механизмов возникновения таких симптомов, что даст возможность более эффективно воздействовать на основные патогенетические механизмы заболевания.

Механизмы образования кишечных газов

Состав газовой смеси отличается в различных отделах ЖКТ. Основным источником газовой смеси желудка считается воздух, который попадает при заглатывании как во время приема пищи, так и отдельно (Azpiroz F. et al., 2007).

Что касается газового состава кишечника, то он в значительной степени определяется физиологией микрофлоры, заселяющей тот или иной сегмент кишечника. Процессы бактериального гидролиза пищевых ингредиентов и образования газов наиболее интенсивно протекают в толстой кишке, поскольку в норме именно там определяется наибольшее количество микроорганизмов (Gasbarrini A. et al., 2007). Газовая смесь кишечника на более чем 99% состоит из 5 газов, не обладающих запахом — азота, кислорода, углекислого газа, водорода и метана, содержание которых варьирует в широких пределах (таблица) (Lembo T. et al., 1999).

Кишечный газНижняя границаВерхняя граница
Азот1192
Кислород011
Углекислый газ354
Водород086
Метан056

Другие газы, обладающие запахом, такие как аммиак, индол, скатол, летучие амины (путресцин, кадаверин) и короткоцепочечные жирные кислоты присутствуют только в следовых количествах и составляют не более 1% общей газовой смеси кишечника (Hahn B. et al., 1998; Lembo T. et al., 1999). Свободные индол и скатол образуются в кишечнике вследствие бактериальной ферментации триптофана. Часть индола всасывается в кровь и метаболизируется печенью с образованием индоксила и индоксил сульфата. Последний выделяется с мочой в виде калиевой соли, которая получила название «индикан» (Губський Ю.І., 2000). Аммиак также образуется из аминокислот под воздействием ферментов кишечной микрофлоры в результате дезаминирования. Путресцин и кадаверин образуются микроогранизмами путем декарбоксилирования соответственно орнитина и лизина. Короткоцепочечные жирные кислоты (уксусная, пропионовая, масляная, изовалериановая и др.) являются продуктом деградации полисахаридов (Binder H.J., 2010).

Долгое время стереотипно считалось, что именно такие продукты распада аминокислот, как индол и скатол являются первичными компонентами газов с неприятным запахом. Однако в последних исследованиях установлено, что за характерный запах человеческих фекалий ответственны компоненты, в состав которых входит сера — сульфид водорода, диметилсульфид и метантиол (Houghton L.A. et al., 2006).

Еще одним механизмом поступления газов в просвет кишечника может быть их диффузия из кровяного русла. Поскольку образование водорода, углекислого газа и метана может приводить к снижению парциального давления азота в просвете до величин, значительно меньших, чем в крови, то этот газ может диффундировать из сосудистого русла в просвет кишечника (Gasbarrini A. et al., 2009).

Утилизация газов ЖКТ осуществляется за счет таких процессов, как отрыжка, выделение естественным путем, бактериальное потребление и выделение с выдыхаемым воздухом. Последние два механизма требуют особого внимания. Некоторые бактерии не выделяют, а наоборот, потребляют газы, ранее образованные в кишечнике. Так, архебактерии (Methanobrevibacter smithii, Methanosphaera stadtmanae и другие Methanobacteriales) в процессе анаэробного дыхания окисляют молекулярный водород с образованием метана, сульфатредуцирующие бактерии родов Desulfomaculum, Desulfovibrio, Desulfomonas используют водород из просвета кишечника для формирования конечного продукта энергетического обмена — сульфида водорода. Ацетогенные бактерии (некоторые виды клостридий) могут потреблять водород при восстановлении диоксида углерода с формированием уксусной кислоты (Готтшалк Г., 1982; Климнюк С.І. та ін., 2004). Бактерии рода Campylobacter (в том числе Helicobacter pylori) содержат мембранные гидрогеназы, что позволяет им использовать молекулярный водород в дыхательной цепи для аккумуляции энергии (Olson J.W., Maier R.J., 2002; Maier R.J., 2005).

Роль кишечных газов в формировании гастроинтестинальных симптомов

Механизмы, лежащие в основе вздутия и растяжения до сих пор полностью не изучены, однако в настоящее время предполагается, что в патогенезе формирования данных симптомов вовлечено множество факторов, среди которых повышенное газообразование, уменьшение потребления внутрипросветного газа, нарушение моторики ЖКТ и выделения газа, висцеральная гиперчувствительность, нарушение мышечной активности стенки живота. Сейчас хорошо известна зависимость газообразования от характера питания. Так, даже у здоровых лиц некоторые фрукты и овощи (в частности бобовые и фасоль), пшеничная мука, овес, картофель и зерновые, содержащие олигосахариды, не перевариваются ферментами в верхних отделах ЖКТ и, таким образом, становятся доступным субстратом бактериальной ферментации (Gasbarrini A. et al., 2009), что может приводить к вздутию живота.

Повышенное потребление продуктов с высоким содержанием так называемых пищевых волокон (растительная клетчатка, пектин, рафиноза) также может стать источником повышенного газообразования даже у здоровых лиц.

Что качается взаимосвязи между избыточным содержанием кишечного газа и вздутием живота у пациентов с функциональными заболеваниями кишечника, то этот вопрос до сих пор остается открытым. Использование техники отмывания кишечных газов продемонстрировало, что объем газов у пациентов с синдромом раздраженной кишки (СРК) сходный с таковым у здоровых лиц (Caldarella M.P. et al., 2002). В то же время некоторые исследования, основанные на количественном определении кишечных газов при помощи обычной рентгенографии, доказали повышенное содержание газов у пациентов с СРК по сравнению с контролем (Koide A. et al., 2000). В ряде работ продемонстрировано значительное повышение экскреции водорода и метана выдыхаемым воздухом у пациентов с СРК по сравнению с контролем (King T.S. et al., 1998). Хотя в других исследованиях указывается на иные возможные причины возникновения вздутия живота у пациентов с функциональными заболеваниями кишечника, как то: нарушение распределения газов в кишечнике без изменения их объема (Harder H. et al., 2003) и смещение диафрагмы (Accarino A. et al., 2009).

Такая неоднозначность мнений побудила нас к формированию собственного виденья представленной проблемы. Так, при обследовании 51 пациента с диагнозом СРК и диареей (Римские критерии ІІІ) у 21 из них установлен высокий уровень водорода в выдыхаемом воздухе натощак, причем выраженность вздутия живота у таких пациентов имела сильную корреляционную связь с уровнем экскреции водорода (r=0,81; p Коментарі

Источник

Вздутие живота. Как с ним бороться?

Частыми признаками проблем с пищеварением становятся вздутие живота и тяжесть в желудке. Вздутие возникает из-за скопления газов в кишечнике, которое может происходить и в норме. Однако при чрезмерном газообразовании (метеоризме) человек начинает чувствовать дискомфорт и ощущение распирания. Игнорировать проблему однозначно не стоит, даже если она слабо выражена.

Почему возникает вздутие?

Вздутие живота и метеоризм могут быть вызваны разными причинами. Но в любом случае это симптомы, указывающие на возможные проблемы с пищеварительной системой. Повышенным газообразованием сопровождается подавляющее большинство заболеваний желудочно-кишечного тракта (ЖКТ). Одной из причин вздутия может являться аэрофагия – заглатывание воздуха во время еды. Происходить такое может из-за разговоров во время застолий, во время быстрых перекусов на ходу и вследствие таких факторов, как курение, некачественные челюстные протезы и др.

метаболизм кишечника что это. Смотреть фото метаболизм кишечника что это. Смотреть картинку метаболизм кишечника что это. Картинка про метаболизм кишечника что это. Фото метаболизм кишечника что это

Даже у полностью здоровых людей метеоризм может появляться при употреблении следующих продуктов питания:

Что делать, чтобы вздутие не проявлялось?

Простые правила, снижающие риск возникновения метеоризма:

Перед большим застольем или при переедании о предотвращении вздутия * лучше позаботиться заранее. Для этого можно принять капсулу Креон ® 10000 во время еды или сразу после нее. Активные вещества, которые содержатся в препарате, помогают естественному пищеварению, снижая риск появления дискомфорта и тяжести после приема пищи.

Препараты при вздутии живота

Помочь в борьбе со вздутием живота, вызванным недостатком пищеварительных ферментов, могут препараты, содержащие ферменты, сходные с теми, что вырабатывает наш организм.

Что должен «уметь» препарат для улучшения пищеварения? 5

Преимущества Креон ® :

Узнать подробнее, чем отличается Креон ® от других препаратов «>можно здесь.

Источник

Алгоритм метаболизма

метаболизм кишечника что это. Смотреть фото метаболизм кишечника что это. Смотреть картинку метаболизм кишечника что это. Картинка про метаболизм кишечника что это. Фото метаболизм кишечника что это

метаболизм кишечника что это. Смотреть фото метаболизм кишечника что это. Смотреть картинку метаболизм кишечника что это. Картинка про метаболизм кишечника что это. Фото метаболизм кишечника что этоавтор: А. Ю. Барановский, д. м. н., профессор, заведующий кафедрой гастроэнтерологии и диетологии Северо-Западного государственного медицинского университета им. И. И. Мечникова, врач высшей категории

Решение организационных вопросов питания у лиц старших возрастов, разработка и назначение индивидуализированных рационов рационального, профилактического и лечебного питания в существенной степени зависит от правильной оценки врачом нутриционного статуса пожилого человека, особенностей состояния обменных процессов. Именно поэтому профессионально грамотный клиницист, участвующий в решении проблем лечебно-профилактического питания у лиц пожилого и старческого возраста, должен быть достаточно хорошо ориентирован в области основ клинической биохимии и физиологии питания стареющего организма.

Белковый обмен

Белки — сложные азотсодержащие биополимеры, мономерами которых служат аминокислоты (органические соединения, содержащие карбоксильные и аминные группы). Их биологическая роль многообразна. Белки выполняют в организме пластические, каталитические, гормональные, транспортные и другие функции, а также обеспечивают специфичность. Значение белкового компонента питания заключается прежде всего в том, что он служит источником аминокислот.

Аминокислоты делятся на эссенциальные и неэссенциальные в зависимости от того, возможно ли их образование в организме из предшественников. К незаменимым аминокислотам относятся гистидин, лейцин, изолейцин, лизин, метионин, фенилаланин, триптофан и валин, а также цистеин и тирозин, синтезируемые соответственно из метионина и фенилаланина. Девять заменимых аминокислот (аланин, аргинин, аспарагиновая и глутамовая кислоты, глутамин, глицин, пролин и серин) могут отсутствовать в рационе, так как способны образовываться из других веществ. В организме также существуют аминокислоты, которые продуцируются путем модификации боковых цепей вышеперечисленных (например, компонент коллагена — гидроксипролин — и сократительных белков мышц — 3-метилгистидин).

Большинство аминокислот имеют изомеры (D- и L-формы), из которых только L-формы входят в состав белков человеческого организма. D-формы могут участвовать в метаболизме, превращаясь в L-формы, однако утилизируются гораздо менее эффективно.

Взаимоотношение аминокислот

По химическому строению аминокислоты делятся на двухосновные, двухкислотные и нейтральные с алифатическими и ароматическими боковыми цепями, что имеет большое значение для их транспорта, поскольку каждый класс аминокислот обладает специфическими переносчиками. Аминокислоты с аналогичным строением обычно вступают в сложные, часто конкурентные взаимоотношения.

Так, ароматические аминокислоты (фенилаланин, тирозин и триптофан) близкородственны между собой. Хотя фенилаланин является незаменимой, а тирозин — синтезируемой из него заменимой аминокислотой, наличие тирозина в рационе как будто бы «сберегает» фенилаланин. Если фенилаланина недостаточно или его метаболизм нарушен (например, при дефиците витамина С) — тирозин становится незаменимой аминокислотой. Подобные взаимоотношения характерны и для серосодержащих аминокислот: незаменимой — метионина — и образующегося из него цистеина.

Триптофан в ходе превращений, для которых необходим витамин В 6 (пиридоксин), включается в структуру НАД и НАДФ, то есть дублирует роль ниацина. Приблизительно половина обычной потребности в ниацине удовлетворяется за счет триптофана: 1 мг ниацина пищи эквивалентен 60 мг триптофана. Поэтому состояние пеллагры может развиваться не только при недостатке витамина РР в рационе, но и при нехватке триптофана или нарушении его обмена, в том числе вследствие дефицита пиридоксина.

Аминокислоты также делятся на глюкогенные и кетогенные, в зависимости от того, могут ли они при определенных условиях становиться предшественниками глюкозы или кетоновых тел (см. табл. 1).

Таблица 1. Классификация аминокислот

ВидыЭссенциальные аминокислотыНеэссенциальные аминокислоты
АлифатическиеВалин (Г), лейцин (К), изолейцин (Г, К)Глицин (Г), аланин (Г)
ДвухосновныеЛизин (К), гистидин (Г, К)*Аргинин (Г)*
АроматическиеФенилаланин (Г, К), триптофан (Г, К)Тирозин (Г, К)**
ОксиаминокислотыТреонин (Г, К)Серин (Г)
СеросодержащиеМетионин (Г, К)Цистеин (Г)**
Дикарбоновые и их амидыГлутамовая кислота (Г), глутамин (Г), аспарагиновая кислота (Г), аспарагин (Г)
ИминокислотыПролин (Г)

Обозначения: Г — глюкогенные, К — кетогенные аминокислоты; * — гистидин незаменим у детей до года; ** — условно-незаменимые аминокислоты (могут синтезироваться из фенилаланина и метионина).

Необходимые азотсодержащие соединения

Поступление азотсодержащих веществ с пищей происходит в основном за счет белка и в менее значимых количествах — свободных аминокислот и других соединений. В животной пище основное количество азота содержится в виде белка. В продуктах растительного происхождения большая часть азота представлена небелковыми соединениями, также в них содержится множество аминокислот, которые не встречаются в организме человека и зачастую не могут метаболизироваться им.

Синтез пуриновых оснований

Человек не нуждается в поступлении с пищей нуклеиновых кислот. Пуриновые и пиримидиновые основания синтезируются в печени из аминокислот, а избыток этих оснований, поступивших с пищей, выводится в виде мочевой кислоты.

Прием белка

Обычный (но не оптимальный) ежедневный прием белка у среднестатистического человека составляет приблизительно 100 г. К ним присоединяется примерно 70 г белка, секретируемого в полость желудочно-кишечного тракта. Из этого количества абсорбируется около 160 г. Самим организмом в сутки синтезируется в среднем 240–250 г белка. Такая разница между поступлением и эндогенным преобразованием свидетельствует об активности процессов обратного восстановления исходного сложного химического соединения из «осколков», образовавшихся при его метаболизме (ресинтеза белков из аминокислот, а аминокислот из аммиака и «углеродных скелетов» аминокислот).

Азотное равновесие

Для здорового человека характерно состояние азотного равновесия, когда потери белка (с мочой, калом, эпидермисом и т. п.) соответствуют его количеству, поступившему с пищей. При преобладании катаболических процессов возникает отрицательный азотный баланс, который характерен для низкого потребления азотсодержащих веществ (низкобелковых рационов, голодания, нарушения абсорбции белка) и многих патологических процессов, вызывающих интенсификацию распада (опухолей, ожоговой болезни и т. п.). При доминировании синтетических процессов количество вводимого азота преобладает над его выведением, и возникает положительный азотный баланс, характерный для детей, беременных женщин и реконвалесцентов после тяжелых заболеваний.

После прохождения энтерального барьера белки поступают в кровь в виде свободных аминокислот. Следует отметить, что клетки слизистой оболочки желудочно-кишечного тракта могут метаболизировать некоторые аминокислоты (в том числе глутамовую кислоту и аспарагиновую кислоту в аланин). Способность энтероцитов видоизменять эти аминокислоты, возможно, позволяет избежать токсического эффекта при их избыточном введении.

Аминокислоты, как поступившие в кровь при переваривании белка, так и синтезированные в клетках, в крови образуют постоянно обновляющийся свободный пул аминокислот, который составляет около 100 г.

Путь белка

75 % аминокислот, находящихся в системной циркуляции, представлены аминокислотами с ветвящимися цепями (лейцином, изолейцином и валином). Из мышечной ткани в кровоток выделяются аланин, который является основным предшественником синтеза глюкозы, и глутамин. Многие свободные аминокислоты подвергаются трансформации в печени. Часть свободного пула инкорпорируется в белки организма и при их катаболизме вновь поступает в кровоток. Другие непосредственно подвергаются катаболическим реакциям. Некоторые свободные аминокислоты используются для синтеза новых азотсодержащих соединений (пурина, креатинина, адреналина) и в дальнейшем деградируют, не возвращаясь в свободный пул, в специфичные продукты распада.

Роль печени

Постоянство содержания различных аминокислот в крови обеспечивает печень. Она утилизирует примерно ⅓ всех аминокислот, поступающих в организм, что позволяет предотвратить скачки в их концентрации в зависимости от питания.

Первостепенная роль печени в азотном и других видах обмена обеспечивается ее анатомическим расположением — продукты переваривания попадают по воротной вене непосредственно в этот орган. Кроме того, печень непосредственно связана с экскреторной системой — билиарным трактом, что позволяет выводить некоторые соединения в составе желчи. Гепатоциты — единственные клетки, обладающие полным набором ферментов, участвующих в аминокислотном обмене. Здесь выполняются все основные процессы азотного метаболизма: распад аминокислот для выработки энергии и обеспечения глюконеогенеза, образование заменимых аминокислот и нуклеиновых кислот, обезвреживание аммиака и других конечных продуктов. Печень является основным местом деградации большинства незаменимых аминокислот (за исключением аминокислот с ветвящимися цепями).

Инсулиновый ответ

Синтез азотсодержащих соединений (белка и нуклеиновых кислот) в печени весьма чувствителен к поступлению их предшественников из пищи. После каждого приема пищи наступает период повышенного внутрипеченочного синтеза белков, в том числе альбумина. Аналогичное усиление синтетических процессов происходит и в мышцах. Эти реакции связаны прежде всего с действием инсулина, который секретируется в ответ на введение аминокислот и/или глюкозы.

Некоторые аминокислоты (аргинин и аминокислоты с ветвящимися цепями) усиливают продукцию инсулина в большей степени, чем остальные. Другие (аспарагин, глицин, серин, цистеин) стимулируют секрецию глюкагона, который усиливает утилизацию аминокислот печенью и воздействует на ферменты глюконеогенеза и аминокислотного катаболизма. Благодаря этим механизмам происходит снижение уровня аминокислот в крови после поступления их с пищей. Действие инсулина наиболее выражено для аминокислот, содержащихся в кровотоке в свободном виде (аминокислот с ветвящимися цепями), и малозначимо для тех, которые транспортируются в связанном виде (триптофана). Обратное инсулину влияние на белковый метаболизм оказывают глюкокортикостероиды.

Аминокислоты на «экспорт»

Печень обладает повышенной скоростью синтеза и распада белков по сравнению с другими тканями организма (кроме поджелудочной железы). Это позволяет ей синтезировать «на экспорт», а также быстро обеспечивать лабильный резерв аминокислот в период недостаточного питания за счет распада собственных белков.

Особенность внутрипеченочного белкового синтеза заключается в том, что он усиливается под действием гормонов, которые в других тканях производят катаболический эффект. Так, при голодании белки мышц, для обеспечения организма энергией, подвергаются распаду, а в печени одновременно усиливается синтез белков, являющихся ферментами глюконеогенеза и мочевинообразования.

Избыток белка и голодание

Прием пищи, содержащей избыток белка, приводит к интенсификации синтеза в печени и в мышцах, образованию избыточных количеств альбумина и деградации излишка аминокислот до предшественников глюкозы и липидов. Глюкоза и триглицериды утилизируются как горючее или депонируются, а альбумин становится временным хранилищем аминокислот и средством их транспортировки в периферические ткани.

При голодании уровень альбумина прогрессивно снижается, а при последующей нормализации поступления белка медленно восстанавливается. Поэтому хотя альбумин и является показателем белковой недостаточности, он низкочувствителен и не реагирует оперативно на изменения в питании.

7 из 10 эссенциальных аминокислот деградируют в печени — либо образуя мочевину, либо впоследствии используясь в глюконеогенезе. Мочевина преимущественно выделяется с мочой, но часть ее поступает в просвет кишечника, где подвергается уреазному воздействию микрофлоры. Аминокислоты с ветвящимися цепями катаболизируются в основном в почках, мышцах и головном мозге.

Роль мышц

Мышцы синтезируют ежедневно 75 г белка. У среднего человека они содержат 40 % от всего белка организма. Хотя белковый метаболизм происходит здесь несколько медленнее, чем в других тканях, мышечный белок представляет собой самый большой эндогенный аминокислотный резерв, который при голодании может использоваться для глюконеогенеза.

Мышцы являются основной мишенью воздействия инсулина: здесь под его влиянием усиливается поступление аминокислот, увеличивается синтез мышечного белка и снижается распад.

В процессе превращений в мышцах образуются аланин и глутамин, их условно можно считать транспортными формами азота. Аланин непосредственно из мышц попадает в печень, а глутамин вначале поступает в кишечник, где частично превращается в аланин. Поскольку в печени из аланина происходит синтез глюкозы, частично обеспечивающий мышцу энергией, получающийся круго- оборот получил название глюкозо- аланинового цикла.

К азотсодержащим веществам мышц также относятся высокоэнергетичный креатин-фосфат и продукт его деградации креатинин. Экскреция креатинина обычно рассматривается как мера мышечной массы. Однако это соединение может поступать в организм с высокобелковой пищей и влиять на результаты исследования содержания его в моче. Продукт распада миофибриллярных белков — 3-метилгистидин — экскретируется с мочой в течение короткого времени и является достаточно точным показателем скорости распада в мышцах — при мышечном истощении скорость его выхода пропорционально снижается.

Механизм голодания

В отсутствие пищи синтез альбумина и мышечного белка замедляется, но продолжается деградация аминокислот. Поэтому на начальном этапе голодания мышцы теряют аминокислоты, которые идут на энергетические нужды. В дальнейшем организм адаптируется к отсутствию новых поступлений аминокислот (снижается потребность в зависящем от белка глюконеогенезе за счет использования энергетического потенциала кетоновых тел) и потеря белка мускулатуры уменьшается.

Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!

Роль почек

Почки не только выводят конечные продукты азотного распада (мочевину, креатинин и др.), но и являются дополнительным местом ресинтеза глюкозы из аминокислот, а также регулируют образование аммиака, компенсируя избыток ионов водорода в крови.

Глюконеогенез и функционирование кислотно-щелочной регуляции тесно скоординированы, поскольку субстраты этих процессов появляются при дезаминировании аминокислот: углерод для синтеза глюкозы и азот — для аммиака. Существует даже мнение, что именно производство глюкозы является основной реакцией почек на ацидоз, а образование аммиака происходит вторично.

Белок в нервной ткани

Для нервной ткани характерны более высокие концентрации аминокислот, чем в плазме. Это позволяет обеспечить мозг достаточным количеством ароматических аминокислот, являющихся предшественниками нейромедиаторов.

Некоторые заменимые аминокислоты, такие как глутамат (из которого при участии пиридоксина образуется гамма-аминомасляная кислота) и аспартат, также обладают влиянием на возбудимость нервной ткани. Их концентрация здесь высока, при этом заменимые аминокислоты способны синтезироваться и на месте.

Сон после еды

Специфическую роль играет триптофан, являющийся предшественником серотонина. Именно с повышением концентрации триптофана (а следовательно, и серотонина) связана сонливость после еды. Такой эффект особенно выражен при приеме больших количеств триптофана совместно с углеводистой пищей. Повышенная секреция инсулина снижает уровень в крови аминокислот с ветвящимися цепями, которые при преодолении барьера «кровь — мозг» обладают конкурентными взаимоотношениями с ароматическими аминокислотами, но в то же время не оказывает влияния на концентрацию связанного с альбумином триптофана. Благодаря подобным эффектам препараты триптофана могут использоваться в психиатрической практике.

При заболеваниях печени

Ограничение ароматических аминокислот в рационе, в связи с их влиянием на центральную нервную систему, имеет профилактическое значение при ведении пациентов с печеночной энцефалопатией. Элементные аминокислотные диеты с преимущественным содержанием лейцина, изолейцина, валина и аргинина помогают избежать развития белковой недостаточности у гепатологических больных и в то же время не приводят к возникновению печеночной комы.

Основные пластические функции протеиногенных аминокислот перечислены в таблице 2.

Таблица 2. Основные функции аминокислот

АланинПредшественник глюконеогенеза, переносчик азота из периферических тканей в печень
АргининНепосредственный предшественник мочевины
Аспарагиновая кислотаПредшественник глюконеогенеза, предшественник пиримидина, используется для синтеза мочевины
Глутаминовая кислотаДонор аминогрупп для многих реакций, переносчик азота (проникает через мембраны легче, чем глутамин), источник аммиака, предшественник ГАМК
ГлицинПредшественник пуринов, глютатиона и креатинина, входит в состав гемоглобина и цитохромов, нейротрансмиттер
ГистидинПредшественник гистамина, донор углерода
ЛизинПредшественник карнитина (транспорт жирных кислот), составляющая коллагена
МетионинДонор метальных групп для многих синтетических процессов (в т. ч. холина, пиримидинов), предшественник цистеина, участвует в метаболизме никотиновой кислоты и гистамина
ФенилаланинПредшественник тирозина
СеринСоставляющая фосфолипидов, предшественник сфинголипидов, предшественник этаноламина и холина, участвует в синтезе пуринов и пиримидинов
ТриптофанПредшественник серотонина и никотинамида
ТирозинПредшественник катехоламинов, допамина, меланина, тироксина
ЦистеинПредшественник таурина (желчные кислоты), входит в состав глютатиона (антиоксидантная система)

Нормы потребления белка

Современные рекомендации по обеспечению пожилых людей и стариков основными питательными веществами, в первую очередь белками, свидетельствуют о целесообразном некотором снижении суточного количества белковых продуктов в пищевом рационе до 0,75–0,8 г/кг веса. Это связано с тем, что интенсивность основных физиологических функций с каждым десятилетием жизни человека после 50 лет снижается почти на 10 % (Rogers J., Jensen G., 2004), потребность белка уменьшается за счет инволюции синтетических и пластических процессов и ферментообразования, продукции гормонов, ряда биологически активных веществ, обеспечения мышечной деятельности и т. д.

Рекомендуемые нормы потребления для белка с учетом приведенных выше показателей составляют 55–62 г/сут (для мужчины весом 77 кг в возрасте 60–70 лет) и 45–52 г/сут (для женщины весом 65 кг в возрасте 60–70 лет) по выводам IV Американского национального исследования по оценке здоровья и питания (2006).

Вместе с тем установлено, что при сохранении физической активности пожилых людей (профессиональной физической нагрузки, занятий физкультурой, работы на дачном участке и т. п.) для поддержания азотного равновесия организма требуется повышение белкового обеспечения пожилого человека в количестве 1–1,25 г/кг в день. Эта же квота пищевого белка полностью обеспечит потребности пожилого человека, находящегося в состоянии стресса, болезни или ранения (Lowenthal D. T., 1990).

Рис. 1. Влияние пищевых веществ на развитие болезней избыточного питания (по А. А. Покровскому)

метаболизм кишечника что это. Смотреть фото метаболизм кишечника что это. Смотреть картинку метаболизм кишечника что это. Картинка про метаболизм кишечника что это. Фото метаболизм кишечника что это

Дефицит белка = старение

Важно отметить, что организм пожилого человека очень чувствителен как к дефициту экзогенно поступающих белков, так и к их избытку. В условиях белкового дефицита прогрессирующе развиваются процессы дистрофии и атрофии клеточных структур, в первую очередь мышечной ткани, слизистых оболочек (желудочно-кишечного тракта, дыхательной системы и др.), паренхиматозных органов (поджелудочной железы, печени, эндокринных желез и др.), структур иммунной системы. Белковый дефицит питания активизирует процессы старения организма.

Механизмы патологического действия на организм пожилого и старого человека пищевой белковой перегрузки связаны в первую очередь с белковой «агрессией» печени и связанной с этим несостоятельностью ферментных систем, неполной деполимеризацией всех фракций белка, накоплением в крови токсических продуктов незавершенных окислительно-восстановительных реакций и т. д.

Белковая перегрузка

Интоксикационный процесс метаболического генеза при избыточном белковом питании пожилых и старых людей многократно усиливается по причине развития процессов гнилостной кишечной диспепсии в условиях относительной ферментной недостаточности желудка, поджелудочной железы, тонкой кишки и развития синдромов мальдигестии и мальабсорбции, а также кишечного дисбиоза (Барановский А. Ю., Кондрашина Э. А., 2008).

Белковая пищевая перегрузка в рамках интоксикационного синдрома способствует перевозбуждению центральной нервной системы, иногда — состояниям, близким к неврозам. При этом наблюдается повышенный расход витаминов в организме с формированием витаминной недостаточности.

При длительном высокобелковом питании вначале наблюдается компенсаторное усиление, а затем угнетение секреторной функции желудка и поджелудочной железы, повышается риск развития таких заболеваний, как подагра, мочекаменная болезнь.

В следующем выпуске журнала «Практическая диетология» мы продолжим рассказ о геронтологических особенностях основных видов обмена веществ пациентов пожилого и старческого возраста — углеводном и жировом обмене.

// ПД

Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *