модуль деформации и модуль упругости в чем разница
Модуль деформации стали и её упругости
Основной главной задачей инженерного проектирования служит выбор оптимального сечения профиля и материала конструкции. Нужно найти именно тот размер, который обеспечит сохранение формы системы при минимальной возможной массе под влиянием нагрузки. К примеру, какую именно сталь следует применять в качестве пролётной балки сооружения? Материал может использоваться нерационально, усложнится монтаж и утяжелится конструкция, увеличатся финансовые затраты. На этот вопрос ответит такое понятие как модуль упругости стали. Он же позволит на самой ранней стадии избежать появления этих проблем.
Общие понятия
Модуль упругости (модуль Юнга) — это показатель механического свойства материала, характеризующий его сопротивляемость деформации растяжения. Иными словами, это значение пластичности материала. Чем выше значения модуля упругости, тем меньше будет какой-либо стержень растягиваться при иных равных нагрузках (площадь сечения, величина нагрузки и другие).
Модуль Юнга в теории упругости обозначается буквой Е. Он является составляющей закона Гука (о деформации упругих тел). Эта величина связывает возникающее в образце напряжение и его деформацию.
Измеряется эта величина согласно стандартной международной системе единиц в МПа (Мегапаскалях). Но инженеры на практике больше склоняются к применению размерности кгс/см2.
Опытным путём осуществляется определение этого показателя в научных лабораториях. Сутью этого метода является разрыв гантелеобразных образцов материала на специальном оборудовании. Узнав удлинение и натяжение, при которых образец разрушился, делят переменные данные друг на друга. Полученная величина и является модулем (Юнга) упругости.
Таким образом определяется только модуль Юнга материалов упругих: медь, сталь и прочее. А материалы хрупкие сжимают до того момента, пока не появятся трещины: бетон, чугун и им подобные.
Механические свойства
Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:
Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.
У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.
Модуль упругости
Стоит отметить, что эта величина непостоянная. Даже для одного материала она может иметь разное значение в зависимости от того, в какие точки была приложена сила. Кое-какие пластично-упругие материалы имеют практически постоянное значение модуля упругости при работе как на растяжение, так и на сжатие: сталь, алюминий, медь. А есть и такие ситуации, когда эта величина измеряется формой профиля.
Некоторые значения (величина представлена в миллионах кгс/см2):
Разница в показателях модулей упругости для сталей в зависимости от их марок:
Ещё это значение изменяется в зависимости от вида проката:
Как видно, отклонения в значениях модулей упругой деформации стали незначительны. Именно по этой причине большинство инженеров, проводя свои расчёты, пренебрегают погрешностями и берут значение, равное 2,00.
модуль деформации и упругости
Смотреть что такое «модуль деформации и упругости» в других словарях:
Модуль деформации — коэффициент пропорциональности линейной связи между приращениями давления на образец и его деформацией. Источник: ГОСТ 30416 96: Грунты. Лабораторные испытания. Общие положения оригинал документа Смотри также родственные термины … Словарь-справочник терминов нормативно-технической документации
Модуль упругости — Модуль упругости общее название нескольких физических величин, характеризующих способность твёрдого тела (материала, вещества) упруго деформироваться (то есть не постоянно) при приложении к нему силы. В области упругой деформации модуль… … Википедия
Модуль Юнга — (модуль упругости) физическая величина, характеризующая свойства материала сопротивляться растяжению/сжатию при упругой деформации[1]. Назван в честь английского физика XIX века Томаса Юнга. В динамических задачах механики модуль Юнга… … Википедия
УПРУГОСТИ ТЕОРИЯ — раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. основа расчётов на прочность, деформируемость и устойчивость в строит, деле, авиа и… … Физическая энциклопедия
УПРУГОСТИ ТЕОРИЯ — раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретич. основа расчётов на прочность, деформируемость и устойчивость в строит. деле,… … Физическая энциклопедия
МОДУЛЬ УПРУГОСТИ — хар ка сопротивления материала упругой деформации (см. Деформирования диаграмма). М. у. величина, равная отношению напряжения к вызванной им упругой относит. деформации. Различают М. у.: при осевом растяжении сжатии (модуль Юнга, или модуль норм … Большой энциклопедический политехнический словарь
Модуль сдвига — Сдвиговая деформация В материаловедении модулем сдвига (обозначается буквой G или μ), называется отношение касательного напряжения к сдвиговой деформации … Википедия
Деформации материалов — Термины рубрики: Деформации материалов Воздействие Деформативность Деформации Деформации неупругие Деформации относительные … Энциклопедия терминов, определений и пояснений строительных материалов
Модуль упругости — – коэффициент пропорциональности между приложенным к телу напряжением (в упругой области) и обусловленной им величиной деформации. [Тарасов В. В. Материаловедение. Технология конструкционных материалов: учебное пособие для вузов / В. В.… … Энциклопедия терминов, определений и пояснений строительных материалов
Модуль упругости и модуль деформаций
При кратковременной нагрузке и напряжениях, равных 0,2…0,3 от предела прочности бетона на сжатие, пластические деформации бетона проявляются еще незначительно, и в этом случае материал можно считать работающим по закону Гука, а его деформативные свойства характеризовать модулем упругости, а при длительном действии нагрузки и увеличении напряжений – модулем деформаций или модулем упругопластичности бетона (рис 12).
Связь между модулем упругости и модулем деформаций выражается формулой
где v = εу / εб – коэффициент упругих деформаций бетона.
Предельные деформации бетона
Под предельными деформациями бетона при растяжении (или сжатии) понимают относительные средние удлинения (лили укорочения) в момент разрушения центрально растянутых (центрально сжатых) образцов бетона, испытанных по государственному стандарту.
Предельная растяжимость бетона составляет 0,1…0,2 мм/м, т.е ebt = 0.0001…0.0002 (в нормах принимают ebt = 0.00015).
Предельная сжимаемость бетона в 10…20 раз больше относительного удлинения и составляет 0.8…4 мм/м длины образца (в нормах при кратковременном действии нагрузки принимают eb = 0.0025). Предельная сжимаемость бетона в сжатой зоне изгибаемых железобетонных элементов достигает 0.003…0.005.
Значения предельных относительных деформаций бетона принимают равными при непродолжительном действии нагрузки (п. 5.1.12, СП 52–101–2003): ebо = 0.002 – при осевом сжатии; ebtо = 0.0001 – при осевом растяжении.
Лекция 4. Армирование железобетонных конструкций
Арматура
Для армирования железобетонных конструкций применяют арматуру различных классов:
а) мягкие стали с площадкой текучести;
б) стали средней твердости;
в) высокопрочные стали.
Основной прочностной характеристикой арматуры является нормативное сопротивление растяжению, равное физическому или условному пределу текучести (рис. 16).
Физический предел текучести σт = 240…400 МПа имеет арматура классов А1, АП, АШ, условный предел текучести σ02 = 600…800 МПа имеет легированная арматура классов А1У, АУ и σ02 = 600…1000 МПа имеет термически упрочненная арматура.
Для обыкновенной арматурной проволоки σв = 500 МПа, для высокопрочной проволоки σв = 1300…1900 МПа.
Модуль упругости стержневой арматуры Еs с ростом ее прочности несколько уменьшается и составляет 2.1.10 5 МПа для арматуры классов А1, АП, модуль упругости проволоки классов В1, ВП, ВрП равен 2.0*10 5 МПа, для арматурных канатов класса К7 равен 1.8.10 5 МПа.
В практических расчетах значение модуля упругости арматуры Еs при растяжении и сжатии принимают равным 2.0.10 5 МПа.
Рис. 16. Разновидности арматуры для железобетонных конструкций
Дата добавления: 2016-11-29 ; просмотров: 4190 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Модуль общей деформации грунта и модуль упругости
Модуль деформации – это одна из характеристик грунта, которая позволяет оценить его сжимаемость, с точки зрения теории упругости – это величина, связывающая напряжения с деформациями. Необходимость в определении этой характеристики возникает, если нужно рассчитать основания по деформациям. Известно, что расчет оснований по второй группе предельных оснований является основным, поэтому переоценить значение этой характеристики невозможно. В связи с тем, что грунт не является упругим телом, то использование модуля упругости приведет к большим расхождениям с экспериментом. Поэтому, в практике геотехники и механики используется модуль общей деформации грунта – это характеристика линейной взаимосвязи приращений давления и деформаций грунта, с использованием допущений работы грунта как упругого тела. Одно из этих допущений – работа грунта в условиях однократного нагружения, без фазы разгрузки. Действительно для задач массового проектирования и нового строительства грунт испытывает поэтапное нагружение в процессе строительства без фазы разгрузки. Однако, есть задачи в геотехнике, например, проектирование глубоких котлованов, расчет влияния нового строительства, где грунт испытывает снятие бытовых давлений, поэтому в решении этих задач также используется модуль упругости или модуль на ветви вторичного нагружения грунта. Соотношение устанавливается экспериментально, для предварительных расчетов пользуются зависимостью Еur=5Е, где Eur – модуль упругости, МПа.
Чтобы определить деформационные свойства грунтов, используются несколько способов. Одним из эффективных методов определения модуля деформации считают его оценку по результатам штамповых испытаний. С их помощью выполняется исследование в условиях природного залегания грунтов, а также искусственных оснований для контроля качества уплотнения путем сравнения с проектной деформацией. Модуль деформации, определенный таким способом, принято называть штамповым. Это значение используется в известных аналитических формулах при расчете осадки фундамента (модель слоя конечной толщины, метод послойного суммирования, метод эквивалентного слоя, метод Бронина и др.).
Методы определения модуля деформации грунта
Штамповый метод испытания предусматривает использование винтовых и плоских штампов. Он предназначен для применения на любых промышленных или общественных объектах первого и второго уровня ответственности. К таким объектам можно отнести:
На деформацию влияет степень напряжения в грунте, которая возникает в результате нагрузки от фундаментов сооружений. Исходя из этого, данный параметр необходимо определять при уровне деформации, соответствующем рассматриваемой глубине под подошвой основания здания.
В большинстве современных сооружений показатель вертикальной деформации составляет 0,01-0,1%. Такой показатель вынуждает использовать штампы и прессиометры. Данные способы определения модуля деформации считаются прямыми. Это обусловлено тем, что для определения модуля применяются результаты проведенных испытаний и решения теории упругости.
Существуют и другие методы полевых исследований, но они считаются косвенными. Данный факт обусловлен тем, что они предусматривают использование корреляционных зависимостей, а не решений теории упругости.
Как проводятся испытания?
Чаще всего для проведения испытаний прессиометром используется баллонный прессиометр, предложенный Луи Менаром. Реже используют конусный или самозабуривающийся прессиометр.
Все необходимые исследования можно провести даже в скальных и дисперсных грунтах, прочность которых на одноосное сжатие меньше 10 МПа. В рамках данных исследований выполняются измерения давления, изменения объема или радиуса рабочей камеры. На основании полученных результатов можно определить предельное давление и прессиометрический модуль деформации. Для его определения потребуются решения теорий упругости и пластичности. Результаты исследований нужно интерпретировать в соответствии с видом используемого прессиометра.
Алгоритм расчета модуля упругости грунта и модуля деформации
Для определения этих данных выполняются следующие действия:
Для расчета модуля деформации используется специальная формула ГОСТ 20276.1-2020:
В этой формуле v означает коэффициент Пуассона. Это показатель деформируемости грунта, который характеризует соотношение продольных и поперечных деформаций. Для определения данного коэффициента проводятся исследования в приборах трехосного сжатия или компрессионных приборах с измерением бокового давления.
Чтобы определить модуль деформации для винтового штампа, используется несколько видоизмененная формула:
Ключевое отличие этой формулы — наличие коэффициента Kp. Он зависит от степени заглубления штампа. Для его определения необходимо разделить глубину расположения на диаметр штампа.
Для создания формулы штампового модуля использовалось уравнение Буссинеска относительно единичной силы, которая была приложена к упругому полупространству.
Результаты деформационных испытаний зависят сразу от нескольких критериев:
Зачастую высокая точность модуля деформации грунтов неактуальна. Иногда будут актуальны табличные значения или корреляционная зависимость физических и деформационных характеристик. Также можно использовать корреляционную зависимость параметров зондирования и деформационных характеристик.
Примеры определения модуля деформации грунта:
Где заказать расчет модуля общей деформации грунта?
Все перечисленные действия находятся в зоне ответственности специалистов Лаборатории «СибгеоПро». Наша Лаборатория аккредитована ОАО «НТЦ Промышленная безопасность». У нас есть необходимые допуски СРО на изыскания. Практический опыт наших специалистов и современные технологии позволяют нам оперативно решать любые задачи на объектах в Сибири и на Дальнем Востоке. Наша компания успешно сочетает полевые и лабораторные методы исследований.
В ходе испытаний специалисты компании «СибгеоПро» используют штамп, а также оборудование для создания нагрузки, замера осадки штампа, а также замачивания и отслеживания уровня влажности грунта. Для выполнения всех необходимых работ мы используем инновационное оборудование, высокое качество которого подтверждено техпаспортом и многочисленными сертификатами.
Наши специалисты учитывают специфику объекта и требования заказчиков. Поэтому для каждого объекта мы разрабатываем отдельную программу испытаний в соответствии с ГОСТ 20276.1-2020. Данный подход обеспечивает наших клиентов необходимыми данными при минимальных затратах.
Стоимость услуг наших специалистов определяется индивидуально для каждого проекта. Вы можете позвонить по указанным номерам телефонов или оставить сообщение в лайв-чате. Наши консультанты оперативно ответят на все поставленные вопросы.
Чтобы заказать подобное испытание, воспользуйтесь опцией обратного звонка на нашем сайте или напишите консультантам «СибгеоПро» в WhatsApp.
Модуль общей деформации грунта (понятие и особенности)
Величина модуля общей деформации меняется в процессе воздействия на грунт:
где Eot — модуль общей деформации грунта в период действия нагрузки t
P — нагрузка;
h — мощность деформируемого слоя;
St — полная деформация, успевающая развиться за период времени t.
Модуль общей деформации по сравнению с модулем нормальной упругости имеет следующие отличия [Механика грунтов. Бартоломей А.А.]:
Модуль деформации грунта определяют по следующим нормативным документам
Рассмотрим немного подробнее нормирование методов определения модуля деформации.
Определение лабораторного модуля деформации согласно ГОСТ 12248-2010:
1. Методом одноосного сжатия в соответствии с разделом 5.2. для определения модуля деформации и упругости для полускальных и глинистых грунтов с IL ≤ 0,25.
Модуль деформации вычисляется по п.5.2.5.3:
Модуль деформации E в заданном диапазоне напряжений Δσ вычисляют по нагрузочной ветви зависимости ε1 = f(σ) по формуле:
2. Методом трехосного сжатия в соответствии с разделом 5.3. для определения
модуля деформации любых дисперсных грунтов..
Модуль деформации вычисляется по п.5.2.5.3:
Модуль деформации E определяют при испытаниях, проведенных при постоянном значении напряжений σ3 ( Δσ3 =0) и вычисляют по формуле:
Δσ1 — приращение напряжений σ1 в заданном диапазоне;
Δε1 — приращение относительных вертикальной деформации образца.
3. Методом компрессионного сжатия в соответствии с разделом 5.4. для песков мелких и пылеватых, глинистых грунтов, органо-минеральных и органических грунтов.
Модуль деформации вычисляется по п.5.4.6.4:
Модуль деформации E в заданном диапазоне напряжений Δσ вычисляют по нагрузочной ветви зависимости ε1 = f(σ) по формуле:
Eoed = Δp / Δε (5.33)
где Δε — изменение относительного сжатия, соответствующее Δp;
mo — коэффициент сжимаемости, соответствующий Δp;
β — коэффициент, учитывающий отсутствие поперечного расширения грунта в компрессионном приборе и вычисляемый по формуле:
β = 1- (2 · υ 2 ) / (1 — υ ) (5.36)
где υ — коэффициент поперечной деформации, определяемый по результатам испытаний в приборах трехосного сжатия по 5.3 или в компрессионных приборах с измерением бокового давления.
При отсутствии экспериментальных данных допускается принимать β равным:
Определение полевого модуля деформации согласно ГОСТ 20276-2012:
1. Методом испытания штампом в соответствии с разделом 5 для определения модуля деформации дисперсных грунтов: минеральных, органо-минеральных и органических грунтов.
Определяют по результатам нагружения грунта вертикальной нагрузкой в забое горной выработки с помощью штампа.
Модуль деформации E вычисляется по п.5.5.2:
Kp — коэффициент, принимаемый в зависимости от заглубления штампа h/D ( h — глубина расположения штампа относительно дневной поверхности грунта, см; D — диаметр штампа, см);
K1 — коэффициент, принимаемый для жесткого круглого штампа равным 0,79;
Δp — приращение давления на штамп;
ΔS — приращение осадки штампа, соответствующее Δp.
2. Методом испытания радиальным прессиометром в соответствии с разделом 5 для определения модуля деформации дисперсных грунтов: песков, глинистых, органо-минеральных и органических грунтов..
В состав установки для испытания грунта радиальным прессиометром должны входить:
Модуль деформации E вычисляется по п.5.5.2:
где Kr — корректирующий коэффициент;
ro — начальный радиус скважины;
Δp — приращение давления на стенку скважины;
ΔS — приращение перемещения стенки скважины (по радиусу).