куда девается то что попадает в черную дыру
Куда деваются объекты при попадании в черную дыру?
Мы знаем, что у черной дыры есть воображаемая граница «невозврата». Сложно понять, что это такое. Если чуть более простым языком объяснить, это горизонт события. Что находится за этим горизонтом – неизвестно.
К сожалению, до сих пор ученым так и не удалось исследовать черную дыру. Поэтому, чтобы что-то понять, единственное, что остается – это взять Теорию Относительности Эйнштейна. В его теории уже в то время было сказано об экстремальных артефактах пространства и времени. Однако только сейчас мы начали их видеть в реальности.
Теория Относительности говорит, что космос – это гладкое пространство и время, хотя иногда бывают искривления из-за наличия веществ в космосе. Черные дыры делают извращенную пертурбацию с нашим пространством и временем. То есть они полностью рвут это пространство.
Ученые знают, что внутри черной дыры пространство устроено таким образом, что там нельзя двигаться как ты хочешь. То есть существует возможность движения в центр, где расположено сердце черной дыры.
Кроме того, неизбежна и сингулярность черной дыры. То есть, что произойдет с предметом, который попадет в черную дыру? Выяснилось, что единственное, что с ним может случиться, это то, что он окажется в сингулярности. В общем, чтобы ты там ни делал в черной дыре, все равно пространство черной дыры принесет себя к сингулярности, ну а затем разорвет на атомы.
Поэтому выбраться из черной дыры невозможно. Потому что в любом случае, при любых данных, все приведет к сингулярности.
Что будет, если попасть в черную дыру?
Сразу огорчу фанатов научной фантастики. На самом деле вы не можете пережить путешествие через черную дыру. И если вы попытаетесь попасть хотя бы в одну из них, как, например, это сделал Мэттью Макконахи в фильме «Интерстеллар», вас разорвет на части задолго до того, как вы узнаете, что находится внутри черной дыры. Однако ученые не просто так наблюдают за этими загадочными космическими объектами последние десятки лет. Это позволило ответить на два вопроса: что такое черная дыра, и что (в теории) находится внутри нее.
Вы вряд ли когда-нибудь захотите отправиться к черной дыре
Что такое черная дыра?
Чтобы в полной мере понять, почему вы не можете просто упасть или запустить свой космический корабль в черную дыру, вы должны сначала понять основные свойства этих космических объектов.
Черные дыры не просто назвали именно так, поскольку они не отражают и не излучают свет. Они видны только тогда, когда поглощают очередную звезду или газовое облако, которые после этого не могут выбраться за границу черной дыры, называемой горизонтом событий. За горизонтом событий находится крошечная точка — сингулярность, где гравитация настолько интенсивна, что она бесконечно изгибает пространство и время. Именно здесь законы физики, какими мы их знаем, нарушаются, а это означает, что все теории о том, что находится внутри черной дыры, являются лишь предположениями.
Этот снимок считается первой фотографией черной дыры M87. Она находится в 55 миллионах световых лет от Земли
Черные дыры кажутся экзотикой большинству из нас, но для ученых, которые на них специализируются, их изучение — обычное дело. Физики выдвигали теории о подобных объектах в течение десятилетий после того, как общая теория относительности Альберта Эйнштейна предсказала существование черных дыр. Однако эта концепция не воспринималась всерьез до 1960-х годов, пока ученые не стали свидетелями поглощения звезд черными дырами. Сегодня черные дыры считаются частью звездной эволюции, и астрономы подозревают, что даже в нашей галактике Млечный Путь их миллионы.
Какие бывают черные дыры
Черные дыры бывают разных видов и могут быть смоделированы с различными уровнями сложности. Например, одни могут вращаться, а другие — содержать электрический заряд. Так что если вы попали в одну из них (ну, допустим, вас не разорвало в клочья до этого), ваша точная судьба может зависеть от того, с какой именно черной дырой вы столкнетесь.
На простейшем уровне существуют три вида черных дыр: звездные черные дыры, сверхмассивные черные дыры и черные дыры средней массы (реликтовые).
Черные дыры с массой звезд образуются, когда очень большие звезды заканчивают свой жизненный цикл и разрушаются. Реликтовые черные дыры все еще мало изучены, и за все время было найдено только несколько таких объектов. Но астрономы считают, что процесс их образования схож с таковым у сверхмассивных черных дыр.
Сверхмассивные черные дыры обитают в центрах большинства галактик и, вероятно, могут увеличиваться до невероятных размеров. Они в десятки миллиардов раз более массивные, чем наше Солнце — за счет поглощения звезд и слияния с другими черными дырами.
После разрушения звезда может стать черной дырой
Звездные черные дыры по размеру могут быть ничтожными по сравнению с их более крупными братьями, но на самом деле они обладают более экстремальными приливными силами, выходящими за пределы их горизонтов событий. Эта разница возникает благодаря особому свойству черных дыр, которое, вероятно, удивит некоторых случайных наблюдателей. Меньшие черные дыры на самом деле имеют более сильное гравитационное поле, чем сверхмассивные. То есть вы скорее заметите изменение в гравитации рядом с небольшой черной дырой.
Что будет, если попасть в черную дыру?
Предположим, вам все же как-то удалось оказаться в космосе рядом со звездной черной дырой. Как ее вообще найти? Единственным намеком на то, что она существует, может быть гравитационное искажение или отражение от звезд, которые находятся рядом.
Но как только вы подлетите ближе к этому странному месту, ваше тело будет растянуто в одном направлении и раздавлено совершенно в другом — это процесс, который ученые называют спагеттификацией. Им обозначается сильное растяжение объектов по вертикали и горизонтали (то есть уподобления их виду спагетти), вызванного большой приливной силой в очень сильном неоднородном гравитационном поле. Говоря простыми словами, гравитация черной дыры будет сжимать ваше тело по горизонтали, а в вертикальном направлении тянуть его, словно ириску. Вы не сможете дышать, говорить и читать наш Telegram-чат тем более.
И это еще самая приличная картинка того, что может быть внутри черной дыры
Если бы вы прыгнули в черную дыру «солдатиком», гравитационная сила на ваших пальцах была бы намного сильнее, чем та сила, которая тянет вас за голову. Каждый кусочек вашего тела будет вытянут в разном направлении. Черная дыра буквально сделает из вас спагетти.
Можно ли выжить после попадания в чёрную дыру?
Итак, попав в звездную черную дыру, вы, вероятно, не будете сильно беспокоиться о «космических» тайнах, которые вы можете открыть на «другой стороне». Вы будете мертвы за сотни километров до того, как узнаете ответ на этот вопрос.
Этот сценарий не полностью основан на теориях и предположениях. Астрономы стали свидетелями такого «приливного разрушения» еще в 2014 году, когда несколько космических телескопов поймали звезду, блуждающую слишком близко к черной дыре. Звезда была растянута и разорвана, в результате чего ее часть упала за горизонт событий, а остальная часть была отброшена в космос.
Если преодолеть горизонт событий, можно достичь гравитационной сингулярности
В отличие от падения в звёздную черную дыру, ваш опыт погружения в сверхмассивную или реликтовую черную дыру будет чуть менее кошмарным. Хотя конечный результат, ужасная смерть, все равно останется единственным сценарием. Однако в теории вы сможете пройти весь путь до горизонта событий и сумеете достичь сингулярности, пока еще живы. Если вы продолжите падение к горизонту событий, вы в конечном итоге увидите, как звездный свет сжимается до крошечной точки позади вас, меняя цвет на синий из-за гравитационного синего смещения. И затем… будет тьма. Ничего. Изнутри горизонта событий никакой свет из внешней Вселенной не сможет попасть к вашему кораблю. Как и вы больше не сможете вернуться обратно.
Так что Мэтью Макконахи очень повезло, что все в фильме было спецэффектами.
Введение в парадокс исчезновения информации в чёрной дыре
В этой статье даётся быстрое введение в парадокс исчезновения информации в чёрной дыре. Для краткости некоторые детали опущены. Кроме того, следует учесть, что текущее понимание проблемы настолько запутанно, что самую последнюю часть статьи нельзя рассматривать, как надёжную или стабильную.
Рис. 1
Две конфликтующих теории
Считается, что математика квантовой теории, иногда называемой «квантовой механикой», управляет всеми физическими процессами в природе. Её можно использовать не для предсказания конкретных событий, а только для получения вероятности того, что что-либо произойдёт. Но вероятности имеют смысл только, если вы сложите все вероятности всех различных возможных исходов и получите сумму равной единице. Квантовая теория, в которой это не так, смысла не имеет. Одно из следствий этого – в квантовой теории информация никогда по-настоящему не теряется и не копируется; в принципе всегда можно определить, с чего начинала система (её начальное состояние), обладая полной информацией о том, чем она закончила (конечное состояние). На рис. 1 изображено столкновение двух частиц и разбегание с места столкновения нескольких частиц, несущих, в зашифрованном виде, информацию о природе и свойствах двух изначальных частиц.
Общая теория относительности – это теория гравитации Эйнштейна, в которой гравитацию можно рассматривать, как эффект искривления пространства и времени. ОТО – это не квантовая теория. Она точно предсказывает, что произойдёт, а не даёт вероятности различных исходов.
С 1915 по 1958 года постепенно формировалось понимание того, что чрезвычайно компактные и массивные объекты превращаются в чёрные дыры. Вблизи их гравитация становится необыкновенно сильной – настолько, что пространство-время искривляются чрезвычайно, и любой, слишком сильно приблизившийся к ним объект, пересёкший горизонт чёрной дыры – поверхность невозврата – не может убежать. На рис. 2 показано формирование горизонта чёрной дыры, в момент, когда две оболочки материи становятся достаточно компактными. Информация о двух этих оболочках перемещается внутрь горизонта и не может выйти наружу – в ОТО.
Рис. 2
Отметим, что невозможно корректно нарисовать чёрные дыры и информацию внутри них. Мои иллюстрации неспособны продемонстрировать искривление пространства-времени. К примеру, для полного понимания вам нужно было бы учесть, что часы внутри чёрной дыры идут совсем по-другому, нежели часы снаружи горизонта, которые, в свою очередь, идут не так, как удалённые часы. Не воспринимайте слишком серьёзно мои иллюстрации, демонстрирующие концептуальную, но не техническую сторону вопроса.
Горизонт – это не объект, а место, за которым убегание становится невозможным. Известная аналогия – лодка, приближающаяся к водопаду по ускоряющемуся течению. Когда лодка проходит кривую невозврата (рис. 3), её мотор становится неспособен бороться с течением, и она неизбежно упадёт. Но капитан лодки не заметит момента пересечения кривой – это просто обычная часть реки, чья важность станет ясной, только когда капитан попытается избежать катастрофы. Точно также, пересекая горизонт в ОТО, вы ничего не заметите; только когда вы попытаетесь избежать чёрной дыры, вы обнаружите, что – ой – вы подошли слишком близко.
Рис. 3
Парадокс исчезновения информации в чёрной дыре
Парадокс возник после того, как Хокинг в 1974-1975 годах показал, что чёрная дыра, окружённая квантовыми полями, будет испускать частицы (излучение Хокинга) и сжиматься (рис. 4), в результате чего испарится. Сравните с рис. 2, на котором информация о двух оболочках застревает внутри чёрной дыры. На рис. 4 чёрная дыра исчезает. Куда же делась информация? Если она исчезла вместе с чёрной дырой, это нарушает квантовую теорию.
Рис. 4: 1) оболочки материи сжимаются; 2) формируется горизонт, и появляется излучение Хокинга (в виде частиц без массы или малой массы, например, фотонов, нейтрино или гравитонов); 3) Излучение Хокинга уносит энергию, заставляя размер и массу чёрной дыры сжиматься; 4) в конце концов, чёрная дыра полностью исчезает, оставляя лишь излучение Хокинга. Проще говоря, информация о том, что попало в чёрную дыру, исчезает, нарушая принципы квантовой теории. Нужно ли менять квантовую теорию?
Возможно, информация вернулась вместе с излучением Хокинга? Проблема в том, что информация не может вырваться из чёрной дыры. Она не может попасть в излучение Хокнига, кроме как через копирование того, что осталось внутри. Но наличие двух копий информации, одной внутри, и одной снаружи, также нарушает квантовую теорию.
Рис. 5: если информация копируется в излучение Хокинга, это нарушает квантовую теорию.
Конечно, дело может быть в том, что квантовая теория неполна, и что физика чёрных дыр заставляет нас расширять её, так как Эйнштейн расширил законы Ньютона своей теорией относительности. Именно в это Хокинг верил тридцать лет.
Принцип дополнительности: спасаем квантовую теорию
Однако, другие считали, что менять нужно не квантовую теорию, а общую теорию относительности. В 1992 был предложен «принцип дополнительности», согласно которому, информация находится в некотором смысле как внутри, так и снаружи, не нарушая при этом квантовую теорию. Предположение было разработано Сасскиндом и его молодыми коллегами. Конкретно, наблюдатели, остающиеся снаружи чёрной дыры, видят, как информация накапливается на горизонте, а затем улетает вместе с излучением Хокинга. Наблюдатели, падающие в чёрную дыру, видят информацию внутри (рис. 6). Поскольку два этих класса наблюдателей не могут общаться, парадокс не возникает.
Рис. 6: Принцип дополнительности говорит, что всё зависит от точки зрения. Наблюдатель снаружи (2а) видит информацию, хранящуюся снаружи, и (3а) передающуюся в излучение Хокинга. Наблюдатель, падающий внутрь (2b) видит информацию внутри.
И всё же, это предположение потенциально внутренне противоречиво, и требует, чтобы несколько странных вещей оказались правдой. Среди них то, что называется «голографией», идея, разработанная ‘т Хоофтом, и затем Сасскиндом. Идея состоит в том, что физику трёхмерного содержимого чёрной дыры, в которой, очевидно, работает гравитация, можно рассматривать, путём загадочной трансформации, как физику, находящуюся прямо над двумерным горизонтом, где она описывается двумерными уравнениями, в которые гравитация вообще не входит!
Рис. 7: Интересно, что описать внутренности чёрной дыры через её наружную часть возможно, это было показано в конце 1990-х и начале 2000-х. Теория струн, в которой содержится квантовая версия ОТО, в некоторых случаях способна это сделать.
Как ни странно, эта теория получила существенное подтверждение в конце 1990-х, по крайней мере, для некоторых ситуаций. В 1997 году Малдацена предположил (а сотни людей проверили это предположение разными способами), что при определённых условиях теория струн (квантовое обобщение ОТО, кандидат на теорию законов природы нашей Вселенной) эквивалентна квантовой теории (конкретно, квантовой теории поля) без гравитации и в меньшем количестве измерений. Эта взаимосвязь, известная, как AdS/CFT или «соответствие полей/струн», заслуживает отдельной статьи.
Успех голографии усилил веру в истинность принципа дополнительности. Более того, соответствие полей/струн позволило довольно убедительно показать, что небольшие чёрные дыры могут формироваться и испаряться в струнной теории в процессе, который можно описать соответствующей квантовой теорией поля (хотя и не детально) – а следовательно, этот процесс, как и любой другой процесс в квантовой теории, происходит с сохранением информации! К 2005 году даже Хокинг принял эту точку зрения – что, как предполагает принципа дополнительности, информация не теряется в чёрных дырах, и что изменять нужно ОТО, а не квантовую теорию.
Файервол и текущая неразбериха
Однако в принципе дополнительности были несостыковки. Испарение чёрных дыр идёт так медленно, что в квантовой теории пока не существует уравнений, описывающих этот процесс. В поисках этих уравнений Альмхейри, Маролф, Полчински и Салли обнаружили, что, при выполнении разумных предположений, принцип дополнительности содержит внутреннее противоречие, проявляющееся, когда чёрная дыра испаряется примерно наполовину. Доказательство довольно хитрое, оно включает квантовую запутанность, которую Эйнштейн называл «жуткой», и которая используется в квантовых компьютерах. Грубо говоря, примерно к середине процесса из чёрной дыры через излучение Хокинга исчезает так много информации, что её не хватает, чтобы при помощи голографии отобразить внутренности чёрной дыры на горизонте. Следовательно, вместо того, чтобы падающий внутрь наблюдатель спокойно проходил через безобидный горизонт, как на рис.6, наблюдатель не обнаружит никаких внутренностей, причём очень жёстко – он поджарится на т.к. файерволе (стена огня), висящей прямо над горизонтом (рис. 8).
Рис. 8
Возможность существования файервола потребовала бы кардинальных изменений ОТО. В случае истинности получалось бы, что описание чёрных дыр в ОТО, с большим внутренним объёмом, с горизонтом, представляющим собой просто точку невозврата (как на рис. 3), а не какое-то особое место, где что-то происходит, оказалось бы совершенно неверным после того, как чёрная дыра существенно испарилась бы.
Так что парадокс вернулся! И в ещё худшем виде. Получается, что если квантовая теория и принцип дополнительности верны, ОТО нужно менять не частично – её нужно серьёзно переделывать! И никаких признаков такой переделки не наблюдается в теории струн, предлагавшей пример голографии. Но соответствие полей/струн говорит о том, что квантовая теория может описать формирование и испарений чёрных дыр, поэтому информация не исчезает. Можно ли заменить чем-либо принцип дополнительности? Или же неверен какой-то из аргументов, создающих парадокс?
Все запутались. Существует множество предположений о решении этой головоломки. Большинство из них не доходит до вас. СМИ рассказывает вам о Хокинге, поскольку он знаменит, но он всего лишь один из очень многих голосов, обсуждающих разные идеи. Все эти идеи страдают от одной проблемы: недостатка уравнений для доказательства и объяснения деталей того, как они работают. И поскольку недостаток уравнений и привёл к парадоксу файервола, вряд ли можно выпутаться из этой ситуации, полагаясь на ещё одно предположение с недостаточным количеством уравнений!
Но, хотя Хокинг всего один из многих вносящих предложение, и хотя в его предположении не хватает уравнений, и оно, скорее всего, будет неполным, и, возможно, неверным – вы, наверно, захотите узнать, что же он предложил. Довольно сложно понять это без уравнений, но вот, как я могу это объяснить (рис. 9). Хокинг отмечает, что хотя внешняя часть чёрных дыр быстро упрощается, их внутренности могут быть очень сложными. Сложные системы, типа погоды, выказывают свойства хаоса, что может сделать их непредсказуемыми ещё до использования квантовой теории. Он предполагает, что эта сложность дестабилизирует горизонт и позволяет информации, зашифрованной внутри чёрной дыры, просачиваться наружу. Поскольку это нарушило бы теоремы самого Хокинга, касающиеся ОТО, я предполагаю, что это значит, что ОТО необходимо изменить. И поскольку его предположение строится на AdS/CFT (соответствии поля/струн), я предполагаю, что он считает, что это должно происходить в теории струн. И поскольку то, что попало в чёрную дыру, всё-таки выйдет из неё, эти дыры на самом деле не чёрные – так что, зовите их «серыми дырами», или «метастабильными связанными гравитационными состояниями», или «на первый взгляд чёрными дырами» – но «чёрные», возможно, не совсем правильный термин.
Рис. 9: прошу прощения у Хокинга, поскольку ни я, ни кто-либо из моего окружения точно не знает, что он имеет в виду. Так что мне пришлось сделать грубый набросок того, что как я считаю, он пытается предложить.
Но с этим предложением есть много очевидных проблем, не самая меньшая из которых та, что загадка файервола проявляется уже у наполовину испарившейся чёрной дыры, а не в конце её жизни. Поэтому чёрная дыра остаётся ещё достаточно большой, когда информация уже начинает просачиваться – и это очень сложно примирить с предложением Хокинга. Так что не ждите появления консенсуса по поводу предложения Хокинга, особенно без каких-то конкретных уравнений для решения.
В любом случае всё, что вы узнали о чёрных дырах, пока что по сути верно. Астрофизикам не нужно волноваться из-за изменений того, что, как они думают, им известно о звёздных или галактических чёрных дырах. По крайней мере, для больших и не очень старых чёрных дыр, предложение Хокинга не приведёт к каким-то измеримым изменениям. А если вы упадёте в дыру, то всё равно не сможете выбраться, или отправить сообщение кому-либо снаружи. Так что, даже если окажется, что строгих чёрных дыр не существует, в центре почти каждой галактики Вселенной всё равно будет находиться «достаточно чёрная» дыра.
Не ждите, что эта 40-летняя загадка будет разрешена в ближайшее время. Её решение, скорее всего, предложит какой-нибудь молодой физик, о котором вы ничего не знаете, или даже ещё не родившийся человек.
Российские физики выяснили, как найти потерянное в черной дыре
Nicole R. Fuller/National Science Foundation
Ученые из Института ядерных исследований РАН предложили свой ответ на вопрос о том, может ли информация бесследно исчезать в черной дыре. Физики использовали упрощенную модель гравитации и математические методы, использующиеся для описания процесса туннелирования. Результаты работы опубликованы в Journal of High Energy Physics, полностью ознакомиться со статьей можно на сайте препринтов arXiv.org.
Черные дыры — объекты, не выпускающие из себя ничего, даже свет. Однако еще в 1974 году Стивен Хокинг выдвинул предположение, что черные дыры не только притягивают материю, но и испускают разнообразные элементарные частицы — так называемое «излучение Хокинга», имеющее тепловой спектр. Черная дыра изменяет вакуум вокруг себя, и из него парами рождаются частицы. При этом одна из них падает внутрь черной дыры, а вторая улетает, унося часть массы черной дыры. Таким образом, черная дыра постепенно испаряется, пока не исчезнет совсем. Но здесь возникает парадокс: куда девается информация об объектах, упавших в черную дыру после ее исчезновения? Этот «информационный парадокс» мучает физиков уже почти полвека.
Проблема заключается в том, что любой предмет, оказавшийся в черной дыре, исчезнет в ее сингулярности. Однако взамен черная дыра испускает поток теплового излучения Хокинга, по конечному состоянию которого невозможно понять, что именно попало в черную дыру. Известные нам законы квантовой механики однозначно позволяют предсказать вероятности исходов тех или иных событий, связывают начальные и конечные состояния. Начальное состояние любой системы может быть однозначно восстановлено на основании конечного. Однако черная дыра не обладает таким свойством. Вероятное решение парадокса — несовершенство математического аппарата. Возможно, излучение черной дыры однозначно определяется тем, что в нее было брошено, просто вычисления этого не показывают.
Работа российских физиков стала еще одним шагом к разрешению парадокса. Они изучали не обычную трехмерную гравитацию, а ее упрощенную версию, двумерную дилатонную гравитацию с границей. В такой модели возможен очень простой, но редкий процесс: черная дыра может образоваться при столкновении одной квантовой частицы с границей, а затем распасться, испустив ровно одну частицу. Хотя вероятность такого процесса крайне мала, он — очень простой.
Поэтому российским физикам удалось построить полуклассическое описание этого процесса с помощью математических методов, которые обычно применяются для описания процессов туннелирования в квантовой механике. Обычная квантовая частица может «пройти сквозь стену» — протуннелировать. Оказывается, частица, оказавшаяся в сингулярности черной дыры, может так же протуннелировать наружу, образуя часть излучения Хокинга. Важно, что такое описание позволяет однозначно связать состояние «финальной» и «начальной» частицы. В будущем физики надеются, что применение таких же методов для описания более сложных процессов, например образования черной дыры из множества частиц и ее испарения, приведет к полному разрешению информационного парадокса.